
Landslides

Landslides

DOI 10.1007/s10346-024-02374-x

Original Paper

Received: 13 February 2024 
Accepted: 12 September 2024 
© Springer-Verlag GmbH Germany, 
part of Springer Nature 2024

Marin K. Clark   · Dimitrios Zekkos   · John Manousakis 

Enabling 3D landslide event statistics using sat‑
ellite and UAV‑enabled topographic differenc‑
ing

Abstract  Knowledge of landslide volumes is needed to connect 
landslide trigger, geometry, and mechanism with the mechanical 
characteristics of the displaced soil and rock masses. While land-
slide volume inventories of widespread events are scarce, increas-
ing availability of high-resolution imagery time-series presents 
new opportunities for developing volume inventories in terms 
of scale and resolution. Here we present a novel 3D landslide vol-
ume dataset using topographic differencing methods to evaluate 
the potential for such studies in future hazard and geomorphic 
research. Remotely sensed stereo optical imagery collected shortly 
after the 2015 Lefkada Mw6.5 earthquake event in western Greece 
was used to create two post-event DSM surfaces using Worldview-3 
satellite images with the SETSM algorithm and UAV-based opti-
cal imagery using Structure from Motion (SfM). We demonstrate 
good agreement between methods for mapping of ~ 700 landslides. 
Elevation change more accurately identifies source areas on steep 
slopes compared to imagery alone, distinguishes deeper landslid-
ing from shallow ravel, and reveals complex patterns that are not 
well approximated by simple landslide slip surface geometries. Sta-
tistical relationships are sensitive to aspects of the methodology, 
namely topographic resolution, accurate image registration, and 
estimation of 2D (plane) area versus 3D surface area. These analyses 
also raise the question of what constitutes a single landslide mass in 
these events and thus the utility of landslide frequency as a statisti-
cal measure. As we achieve resolution that surpasses ground-based 
field studies and removes the selection bias of focusing only on 
select well-defined, deep landslides, new patterns of ground failure 
emerge to which mapping and statistical data interpretations will 
need to adapt.

Keywords  Landslide inventory · Co-seismic landslides · DEM 
differencing · Photogrammetry

Introduction
Landslides are complex geologic phenomena that displace rock 
and/or soil downslope causing significant hazard in many environ-
ments across the world. Widespread landslide events are commonly 
triggered by large earthquakes or intense storms, which cause hun-
dreds to tens of thousands of landslides (Malamud et al. 2004) of 
varied failure mechanisms (Varnes 1978; Hungr et al. 2014). Under 
these conditions, slope failure is induced by horizontal seismic 
accelerations or changes to the hydrodynamic regime of the near 
surface respectively resulting in a range of landslide sizes that span 
many orders of magnitude. Generally speaking, the volume of an 
individual landslide will dictate how far the slide mass travels, how 
it interacts with other hillslope materials, and how it contributes 

to sediment loading in nearby colluvial and fluvial channels. As 
such, measuring and predicting the size and location of landslide 
triggering provides insight to material properties and landslide 
mechanics where knowledge of the forcing event can be estimated. 
Importantly, these data can be used to classify landslide type and 
mechanism (Alberti et al. 2022), to assess material properties of the 
shallow subsurface or conditions (e.g., water pressures, external 
loads) at failure through back-analysis (Kallimogiannis et al. 2019, 
Bunn et al. 2020, Gong et al. 2021, Alberti et al. 2022), as well as to 
assess runout potential and downslope effects (Costa and Schuster 
1988; Crosta et al. 2003; McDougall 2017; Fan et al. 2020). Increased 
focus on the landslide-sediment cascade has highlighted the impor-
tance of landslide connectivity to river systems, particularly in 
understanding how the volume and grain size of landslide debris 
affect channel morphology and conveyance capacity, which can in 
turn lead to increased flooding hazards.

While such assessment of landslides on an individual basis 
is often used in engineering, the forefront of study for landslide 
mechanics involves analysis of large landslide populations of 
hundreds to thousands of simultaneous landslides over large geo-
graphic areas that can result in geospatial estimates of strengths 
and landslide risk across larger regions. These events present new 
opportunities, albeit with some challenges. For example, estimates 
of landslide volume form the basis of slope stability back analysis, 
as well as their mobility, both of which are critical considerations 
when assessing infrastructure resiliency (Postance et al. 2017, Miele 
et al. 2021). Back-analysis of landslides can be used to derive mate-
rial parameters and the conditions (e.g., water pressures, external 
loads) under which the landslide occurred (Alberti et al. 2022). 
These events provide the opportunity to make these calculations 
under similar conditions, across regional gradients in surface prop-
erties and can provide necessary input to estimation of future slope 
hazards (Jones et al. 2023).

However, measurement of the size of the displaced slide mass, 
failure plane, and material properties are notoriously time-consum-
ing and therefore expensive. Current practice uses a small number 
of landslides investigated by field studies at best because depth 
measurements are time-consuming and therefore by necessity 
sample only a relatively small fraction of the total landslide popu-
lation. Typically, this subset of measurements is used to develop a 
volume-area relationship that is then extrapolated to a complete 
inventory of 2D (plan view) mapped areas from imagery (e.g., 
(Larsen et al. 2010). However, this approach can have a selection 
bias toward larger, deeper landslides. For example, investigations 
conducted through the early 2000s generally relied on relatively 
basic surveying equipment such as measuring tape and a levelling 
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rod (e.g., Wieczorek et al. 1985, Barnard et al. 2001, Gabet and Dunne 
2002). Most studies that detail their field techniques simplify land-
slide geometry to an ellipse, measuring the major and minor axes 
to estimate scar area, and multiplying by an average depth to derive 
volume. It has been noted that this simplification is somewhat 
subjective and crude for landslides with rough or complex source 
regions, leading a minority of studies to instead measure longitu-
dinal segments within the source area (May 2002; Imaizumi and 
Sidle 2007).

Considering the possibly thousands of individual landslides, 
measurements of landslide geometry present a technological 
challenge because such studies require high-resolution detail of 
the land surface before and after the event, and detailed measure-
ment of subsurface properties, typically from invasive exploration 
(e.g., boreholes) or geophysics, both of which are rarely available. 
Benchmark datasets that include accurate volume estimates from 
large landslide events following earthquakes and storms are only 
recently emerging as high-resolution repeat topography imaging 
becomes more commonplace (Massey et al. 2020a, b). As imagery 
datasets have become more commonly available for mapping 
landslide inventories, visual, and automated methods have been 
developed that compare before and after optical or radar imagery 
from landslide-triggering events (Hölbling et al. 2017; Alvioli et al. 
2018; Roback et al. 2018; Amatya et al. 2019, 2021; Burrows et al. 
2019; Massey et al. 2020a, b; Catani 2021). As such, much knowl-
edge has been gained about the geospatial characteristics of land-
slide populations. Comparison between digital elevation models 
(direct differencing of DEMs) that were created before and after 
a landslide event, is an advancement to field-based measurements 
of landslide volumes (Kerle 2002; Tsutsui et al. 2007; Lacroix 2016; 
Massey et al. 2020a, b). DEM differencing, or subtraction of pre- 
and post-landslide DEMs, allows one to calculate volumes for any 
arbitrary landslide geometry, and over a larger, more representative 
area than field expeditions could ever reasonably cover. Such dif-
ferencing of topography allows for estimation of volume for land-
slides that have mostly or completely evacuated material from their 
source plane. However, errors associated with poor geo-referencing 
and/or thick vegetation coverage in addition to the resolution of 
pre-event DEM are significant challenges (Kerle 2002; Tsutsui et al. 
2007; Martha et al. 2010; Lacroix 2016). While increasing availability 
of stereo-satellite imagery and UAV imagery for the generation of 
post-event topography from photogrammetry methods has fueled 
many new datasets, further analysis is needed to better explore the 
influence of data type and quality, as well as assessment of differ-
encing calculations.

The availability of high-resolution pre- and post-event topog-
raphy for a moderate earthquake event in the island of Lefkada in 
western Greece offered the opportunity to advance topography dif-
ferencing methods and landslide mapping for 3D landslide geom-
etries using emergent methods for rapidly acquiring cheap DEM 
difference models (Zekkos and Clark 2019). While these models 
lack the precision of LiDAR, the ability to rapidly deploy such tech-
niques after a disaster and the substantially lower cost make these 
methods promising applications in hazard research (Zekkos et al. 
2018b) and would greatly expand datasets for geomorphic study. In 
this paper, we develop two post-event topographic datasets avail-
able for this event and explore a range of differencing algorithms 

to detect surface change and calculate landslide volume. A landslide 
inventory was developed using before and after satellite imagery 
with field verification and is used as a part of this study. Products of 
the topographic differencing were then investigated for inventory 
area and volume statistics and geospatial relationships, with par-
ticular attention to criteria that can be used to identify individual 
landslides and the resulting metrics commonly used to describe 
large landslide event inventories.

The 2015 Mw6.4 Lefkada earthquake event
In recent decades, two strong earthquakes in 2003 and 2015 associated 
with the Kefalonia-Lefkada Transform Fault in western Greece, pro-
duced damage in this area with associated large landslide events and 
liquefaction in the port of Lefkada. Slip along a sub-vertical dextral fault 
was manifested in the 2015 earthquake, which occurred on November 17, 
2015, 07:10 GMT (09:10 local time) and is estimated to be ML 6.0/Mw 6.5 
at a depth of 11 km (Ganas et al. 2015, 2016). The epicenter of the earth-
quake is located onshore of the island, to the north of the port village of 
Vasiliki (Fig. 1). The focal mechanism suggested motion on a fault plane 
oriented parallel with the western coast of the island. The recorded 
PGA at the town of Vasiliki was 0.37 g in the North–South direction, 
whereas in the town of Lefkada it was 0.10 g in the North–South direc-
tion and lower in the East–West direction. The US Shakemap (vers 2) 
is a relatively well-constrained model using station data in the vicinity 
of the landslides that provide an improved estimate of ground motions. 
Developed by USGS, this version incorporates strong motions recorded 
in three stations provided by the Institute of Engineering Seismology 
and Earthquake Engineering (locally known in Greece as ITSAK) in 
Greece including Chortata, Aghios Nikitas, Lefkada town, and Vasiliki 
town stations (Fig. 1, Supplementary Information). Peak ground accel-
erations in the area affected by the landslides (along the coastline), 
varied from 0.25 to 0.35 g and peak ground velocities varied from 27 
to 45 cm/s. These ground motions were concentrated over the steep 
western coastline of the island and generated ~ 700 landslides during 
the timespan of the earthquake.

Methods and datasets
A 2.5D DEM was used in the analyses to make pre-/post-earthquake 
surface comparisons by topographic differencing. The pre-earthquake 
DEM was generated in 2015 for the Hellenic Cadastre as a photogram-
metric sub-product of orthophoto creation from aerial photo strips for 
the whole region of Greece with a ground sampling distance of 2-m 
pixel size. The geometric accuracy of the product is RMSEz ≤ 2.00 m 
and absolute accuracy ≤ 3.92 m for a confidence level of 95%. The raster 
DEM was converted to a 3D point cloud LAS format to be compat-
ible with 3D spatial products extracted from UAV surveys for 3D ter-
rain analysis (for point cloud density see Supplementary Information 
Table S2). Two post-earthquake DSM datasets were generated using 
(1) Unmanned Aerial Vehicles (UAVs) equipped with optical cameras 
and Structure from Motion (SfM) algorithms, deployed shortly after 
the earthquake along the majority of the western coastline (November 
2015 and April 2016), and (2) satellite stereo imagery and an open-
source code (SETSM) which was developed to extract DSMs from 
paired orthoimages collected a month after the earthquake along the 
entire coastline (December 2015) (Fig. 1).
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Post‑event topography: generation of UAV datasets

We leveraged field data generated from deployments using quadro-
tor Unmanned Aerial Vehicles (UAVs) equipped with optical cam-
eras over nine areas of interest along the western coastline (Fig. 1). 
The imagery was collected using manual controlled gridded flight 
paths and was stitched together to create 3D models. For the first 
deployment date on November 19, 2015, only one disaster-affected 
area (Egremni beach L3/4) was mapped by capturing video using 
DJI’s Phantom 2 Vision + quadrotor equipped with a 14 MP 1/2.3″ 
image sensor camera. For the rest of the deployment dates, nine 
areas were mapped along the western coast of Lefkada using DJI’s 
Phantom 3 Pro, featuring a 12.4 MP 1/2.3″ image sensor camera, 
(April 13, 2016) (Zekkos et al. 2017), capturing 4 K videos along 
manually controlled gridded flight paths. Extracted frames from 
video clips for the SfM reconstruction stage maintain 70% side and 
80% front overlap. Video capturing was the selected acquisition 
method due to drone limitations in battery capacity and transmis-
sion range. This method allowed for covering larger areas in less 
time during each flight. Subsequent deployments that were not part 

of the focus of this paper, were conducted fully autonomously using 
photo imagery collected on a gridded pattern and had comparable 
results. The location of the UAV study areas is shown in Fig. 1. Fast-
static GPS measurements of ground control points with an abso-
lute coordinate accuracy of 1–2 cm were conducted for some of the 
surveyed areas, mostly along the top of the landslide areas where 
access was possible. No GCPs could be measured near the bottom, 
along the coastline, due to accessibility issues. For fast-static meas-
urements, the Trimble 5800 L1/L2 GNSS receiver was used. Greek 
Grid coordinate system was implemented for all measurements and 
converted to WGS84 UTM 34N projection for compatibility with 
satellite imagery.

Terrain analysis conducted for each site comprises of the 
extraction of 3D Point Clouds and orthophotos and DSMs using 
the Structure-from-Motion (SfM) photogrammetric and com-
puter vision methodology with overlapping optical imagery 
(still photos or video frames) collected using the UAVs as input 
(Fig. 2). The SfM methodology is a well-established technique 
(Ullman 1979; Snavely et  al. 2008; Westoby et  al. 2012), with 
applications to topographic differencing to infer geomorphic 

Fig. 1   (A) Satellite and UAV DSM coverage. (B) Geologic setting of the 2015 Mw6.5 Lefkada earthquake
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processes (Fonstad et al. 2013; Mancini et al. 2013) and to track 
displacement of single large landslide complexes (Niethammer 
et al. 2012, Lucieer et al. 2014). Its specific implementation in this 
study site has been described in detail in (Zekkos 2018b). The 
process involves detecting and matching common features as 
keypoints across multiple overlapping images, estimating the 
relative positions and orientations of the cameras, and using tri-
angulation to reconstruct the location of 3D points. This process 
involves intersecting the lines of sight (rays) from the camera 
centers through the keypoints in the images. Bundle adjustment 
optimizes the 3D reconstruction and camera parameters to mini-
mize re-projection errors, which refer to the difference between 
the observed and predicted image positions of the 3D points. 
For improved accuracy and geo-location, ground control points 
(GCPs) can be used. These points are established in the field and 
identified throughout the photoset. The final step uses stereo-
matching techniques to generate a dense point cloud or mesh 

from the sparse set of reconstructed points, where texture map-
ping can be optionally applied for detailed and realistic 3D mod-
els. Ground sampling distance for the spatial products generated 
ranges from less than 10 cm near the top of the slope to ~ 30 cm 
due to the significant terrain elevation changes (of about 200 m 
on average).

Post‑event topography: generation of satellite‑based DSM 
(SETSM)

Satellite imagery collected by the Worldview-3 satellites by Digital 
Globe Inc. (now Maxar) about one month after the earthquake, on 
December 28, 2015, was used for the creation of post-earthquake 
DSMs and for interpreting and identifying co-seismic landslide 
polygons. Four stereo-pairs covering the west coast of Lefkada were 
used in this study (as shown in Fig. 1). The resolution of the imagery 

Fig. 2   DSM models derived from UAV and satellite imagery data. Examples of 2.5D DSMs from three of the eight mapped UAV areas. Extrac-
tion of 3D Point Clouds, orthophotos, and DSMs used Structure-from-Motion (SfM) methodology with overlapping optical imagery collected 
using the UAVs as input. Satellite imagery collected by the Worldview-3 satellites by Digital Globe Inc. after the earthquake, on December 28, 
2015, was also used for the creation of post-earthquake DSMs with a Ground Sampling Distance (GSD) of 10–30 cm. Four stereo-pairs cover-
ing the west coast of Lefkada were used in this study (as shown in Fig. 1). The resolution of the imagery was 30–50 cm allowing for identifica-
tion of landslide features that are at least 10 m2 in average dimension
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was 30–50 cm allowing for identification of landslide features that 
are at least 10 m2 in average dimension.

For DSM extraction, the open-source Surface Extraction with 
TIN-based Search-space Minimization (SETSM) methodology 
(vers. 3.2.7) developed by (Noh and Howat 2015, 2017) was imple-
mented, which is based on a combination of the vertical line locus 
method (Schenk 1999) and an adjustment of the rational polyno-
mial coefficients that describe the satellite orbit to produce surface 
models. The SETSM algorithm has been applied previously for 
development of the ArcticDEM, enabling glacier change detection 
studies from topographic change models (Abdullah et al. 2015; Dai 
et al. 2018). Recent applications of the SETSM algorithm in geo-
science include geomorphology (Atwood and West 2022, Corsa 
et al. 2022), volcanology (Dai et al. 2022), and glaciology (King 
et al. 2020, Melling et al. 2024). The SETSM methodology has been 
implemented and described previously by the authors for surface 
fault and landslide displacements in the Kaikoura 2016 earthquake 
in New Zealand (Zekkos et al. 2018a). Four 0.5-m raster resolu-
tion DSMs were created and cropped inside the area of interest, as 
shown in Fig. 1A.

A major issue when performing analyses using 3D models gen-
erated with SfM and SETSM is that the model includes all visible 
features, including vegetation and structures, and these features 
may obscure the bare earth ground. In this study, vegetation within 
the landslide areas and along the steep coastline was sparse. Still, 
two different vegetation removal algorithms were tested to create 
bare earth models (DTMs) for all UAV- and SETSM-mapped areas. 
To assess how accurately the various algorithms remove vegeta-
tion, a sample area within the UAV 3D point cloud was selected 

and vegetation points were manually classified carefully to compare 
the results to the vegetation removal algorithms. The sample 3D 
Point Cloud was derived with 2 classes, vegetation and bare earth 
ground (Fig. 3).

The first algorithm that was tested is fully automatic and relies 
on Agisoft Metashape SfM’s software machine learning techniques 
to automatically classify points in various classes (high vegetation, 
low vegetation, buildings, ground, roads, etc.). No training of the 
algorithm was required and the classification results can only be 
altered manually. By running the classification tool for the sam-
ple area, only top parts of large trees were classified as vegetation, 
leading to poor classification results for ground and vegetation 
points, as shown in Fig. 3. The second algorithm that was tested is 
Cloudcompare’s CANUPO classifier. CloudCompare is a 3D point 
cloud open-source processing software and the CANUPO classifier 
plugin serves as a method to classifying a point cloud. The CAN-
UPO classification algorithm relies on geometric characteristics of 
features and not RGB attributes of the points. The user manually 
creates unique classifiers (by training them on small samples) and/
or applies one classifier at a time on the point cloud to separate it 
into two subsets. To train the classifier, polygons from vegetated 
areas and clear terrain were selected with an effort to select repre-
sentative polygons of the real asset class (small and large elements, 
different species, different ground cover, etc.). The classifier is then 
executed with previous training sets generating for each point in 
the cloud, two scalar fields: one for the class and an additional with 
the classification “confidence” value for each point so that the user 
can quickly identify problematic cases. The CANUPO classification 
method was also implemented for the SETSM dataset within the 

Fig. 3   Classification comparison between Agisoft UAV, CANUPO UAV, and CANUPO SETSM
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same sample area. The lower dataset resolution (50 cm) compared 
to the UAV point cloud (~ 10 cm) and noisy SETSM output made it 
more challenging to geometrically classify ground and vegetated 
areas. For the UAV point cloud, CANUPO performed relatively well, 
though some sparse noise points remain inside the vegetation class 
that required cleaning to create the Digital Terrain Model. CANUPO 
generally outperformed classification based on RGB and HSV color 
filters, which left outlier and generally noisy results.

Further optimization is possible by improving training sets, 
identifying more classes and better-selecting object scale samples. 
The Agisoft Metashape automatic classification algorithm on the 
UAV data did not perform well with problems probably associated 
with resolution of model and the steepness of the terrain. When 
applied to the SETSM point cloud, CANUPO classification did a 
poor job identifying vegetation points, mostly due to lower resolu-
tion dataset and due to the challenges in selecting characteristic 
sample polygons for terrain and vegetation. Removing vegetation 
from this dataset results in a point cloud with large holes, leading 
to significant coarsening of the resulting Digital Terrain Model. A 
detailed qualitative and quantitative evaluation of the different clas-
sification techniques was made using confusion matrices and vari-
ous metrics of success such as accuracy, positive predictive value, 
negative predictive value, recall r, specificity, and F1 score, and this 
work is described by Zekkos and Clark (2019). On the basis of the 

results, the CANUPO classifier was implemented to remove veg-
etation from all UAV 3D point clouds. Data gaps left by vegetation 
removal were filled by triangulation during the 3D TIN creation 
in ArcMap. For the SETSM datasets, it was decided not to remove 
vegetation, because of (a) the poorer CANUPO classifier results that 
would cause large gaps in the digital elevation model; and (b) the 
errors associated with vegetation were not considered critical for 
volume calculation of landslides because steep slopes have sparse 
to no vegetation based on imagery and field inspection.

2015 landslide event inventory development

Before/after event date imagery from WorldView 3 (Digital Globe, 
Inc) satellites was the main basis for identifying landslides related 
to the 2015 earthquake event (Fig. 4) since they covered the entire 
study area. This imagery provided up to 0.3 m resolution from 
which changes to surface vegetation, albedo, and roughness were 
used to identify landslides triggered by the earthquake. Landslide 
morphology, which included head scarps, slump blocks, debris 
scour, and debris deposition, were also recognized and used to 
guide landslide mapping. Detailed perimeter boundaries were 
manually mapped onto orthorectified, pan-sharpened imagery 
using GIS software. Over 700 landslides were identified, from which 

Fig. 4   Landslide inventory development. (left) Low-res satellite imagery depicting contiguous areas of landsliding with amalgamation and no 
separation between source and runout. (center and right) Raster data derived from the topography model used in combination with hydro-
logic flow paths, flow direction, and optical imagery to differentiate amalgamated landslides and to define source regions (dashed lines)
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both their polygon perimeter (full areas) and source areas were 
individually mapped.

In areas of dense landsliding, particular attention was paid to 
the effect of amalgamation (Marc et al. 2015) (Fig. 4). While opti-
cal characteristics were the primary criteria used to identify land-
slides, additional characteristics of the topography (determined 
from slope, aspect, and flow accumulation rasters) were also used 
to separate individual landslides by recognizing minor ridge seg-
ments in the topography and the orientation of debris scour/dep-
osition (Fig. 4). In addition, cm-scale imagery/ topography from 
eight areas of UAV survey along the coast, supplemented mapping 
efforts (Fig. 4). 3D perspectives using a 5-m DEM and UAV-gener-
ated topography were also used to identify boundaries between 
adjacent areas of landsliding. Typically, distinct debris cones could 
be recognized from which the uphill contributing landslide areas 

were distinct (Fig. 5). The results from the DEM differencing were 
also considered in refining landslide boundaries, especially in areas 
where vegetation was sparse or reactivation of previous landsliding 
was unclear from imagery alone.

DEM differencing models and landslide volume estimation

Landslide volume estimates were determined from differencing of 
pre- and post-earthquake surface models and interpreting vertical 
surface elevation change over the mapped areas of landsliding. 
Two post-event models (comparison surfaces: UAV and SETSM) 
were used to develop (1) difference surface models and (2) land-
slide volume inventories relative to the pre-earthquake Hellenic 
Cadastre 2 m DEM (2015) as a reference surface. The resulting 
difference raster represents vertical surface change between the 

Fig. 5   Example surface difference maps from UAV areas. (left) Coded areas refer to either surface elevation gain loss (blue) or gain (red) in the 
surface difference map. (center) Elevation loss in landslide source region. (right) Landslide volume summed over total landslide area
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two-time instants, which we sum as volume loss due to landsliding 
(surface lowering) and volume gain due to debris deposition (sur-
face rise) over the areas of mapped landslides from the imagery 
analysis (Fig. 5). All raster grid models (pre-quake DEM and post-
quake SETSM DSM) were converted to 3D point clouds in Cloud 
Compare, preserving grid resolution, and the pre-quake DEM was 
also converted to a TIN surface model in Cloud Compare. Both 
the SETSM and UAV point clouds were registered to the pre-quake 
TIN in Cloud Compare by first clipping to the approximate area 
of the reference surface, and then using an Iterative Closet Point 
(ICP) algorithm—a rigid body transformation that is comprised 
of a translation and a rotation that minimizes the mean square 
error between a series of selected pair points. Each UAV area 
and SETSM scene was aligned individually, with some variation 
in the resulting goodness of fit between scenes (Supplementary 
Information). As described previously, vegetation was removed 
from UAV 3D point clouds using CANUPO classification, but no 
such filtering was performed on the SETSM models. This method 
has been used previously for landslide monitoring and mapping 
tectonic deformation with LiDAR point clouds (Teza et al. 2007, 
Nissen et al. 2012), but to our knowledge is the first application of 
the ICP algorithm to a catastrophic landslide event to determine 
volumes from hundreds of simultaneously generated landslides 
that form a regional event.

Raster DSMs were then converted to LAS 3D point clouds for 3D 
terrain analysis with UAV and pre-quake 3D point clouds. SETSM 
3D point cloud registration was performed by applying a transfor-
mation based on the Iterative Closest Point (ICP) method in Cloud 
Compare, using the pre-quake Hellenic Cadastre 3D point cloud 
as reference surface. This method calculates a rigid body trans-
formation between two terrain models that minimizes the closest 
point distances between them as defined by a matrix composed 
of translations (tx, ty, and tz in the x, y, and z directions) and rota-
tions (α, β, and γ about the x, y, and z axes). The transformation 
matrix is then applied to the target point cloud and the point-wise 
difference between the reference and the transformed point cloud 
is calculated.

The accuracy of the difference models was evaluated by calculat-
ing the mean and standard deviation of the elevation change (more 
details are given in the Supplementary Information). We consid-
ered slopes between 40 and 50° slope, which are the most frequent 
slope bin that experienced landsliding in this event. We also note 
that uncertainty increases with increasing slope as small horizontal 
offsets are magnified by increasing slope values. Mean difference 
values for the UAV sites range from -0.08 - 0.95 m and standard 
deviations of 1.44 - 3.12 m, except for L2 (Supplementary Informa-
tion). The SETSM scenes had slightly larger positive mean offsets 
(1.27 - 2.21 m) with standard deviations of 2.92–5.17 m. Most areas 

are normally distributed with a few areas showing positive skewness. 
Slight positive offsets are expected since we are differencing DSM 
models with a DEM. The DSM models likely retain some values that 
represent vegetation or other positive surface features that are above 
the true ground surface. We were able to successfully apply vegeta-
tion filters to the UAV regions whereas the filtering of the SETSM 
was not successful; therefore, it may be expected that the SETSM 
have slightly larger positive offsets (and greater standard deviation 
values) than the UAV models.

Aligned datasets were differenced using the ESRI ArcMap soft-
ware 3D surface differencing tool to determine areas of elevation 
gain/loss. This tool creates 3D TIN surfaces from the point cloud, 
or raster models, and then calculates vertical differences between 
the two surfaces. The advantage of this tool is that it easily calcu-
lates 3D (slope-oriented) area as well as plan-view 2D area for each 
landslide polygon, which allowed for assessment of 3D slope-areas 
in the area-volume ratios. Because the UAV and SETSM models 
have significantly higher resolution than the pre-quake DEM, 
we set the resolution of the resulting 3D TIN to the resolution of 
the pre-quake DEM (2 m), and further note that the resolution of 
the DEM affects the resulting 3D area where increasing resolu-
tion (roughness) results in larger 3D areas. The 3D differencing 
tool gives quantitatively similar volumes to a direct differencing 
method, where point clouds are interpolated to raster formats and 
landslide volumes are computed from the summation of the raster 
elevation differences calculated over each grid cell within the poly-
gon boundary. The resulting surface difference model is coded as 
either surface loss or gain and were used to sum areas of landslid-
ing and debris deposition respectively. From the surface difference 
model, we produced (1) a surface difference raster, (2) a summation 
of negative volumes for each mapped full landslide polygon, and (3) 
a summation of negative volumes for each mapped source landslide 
polygon. Additionally, we also calculated the (4) area of only the 
negative volume that lies within each mapped landslide polygon. 
Landslide volume uncertainty was calculated using the uncertainty 
of the difference model (on a per grid cell basis) assuming that the 
uncertainty of the elevation values are uncorrelated (Supplemen-
tary Information). Based on a Monte Carlo sampling model, we 
note that the volume uncertainty scales as a function of the square 
root of landslide area and that low volume to area ratio (i.e., thin 
landslides with ratios of < 0.4) rather than low area alone correlate 
with large errors 50–400% and are excluded from further analysis 
(Supplementary Information).

Results

Surface differencing and landslide volumes
Mapped landslide depth varies considerably from less than 1 m 
to areas with more than 20 m elevation loss from both UAV and 
SETSM models, and with a similar range of elevation gain associ-
ated with debris deposition (Fig. 6). These elevation changes equate 
to several orders of magnitude landslide volume from 10 to 105 m3, 
with a modal volume of 103 m3. Largely, source areas that are identi-
fied from imagery match broadly as areas of elevation loss in the 
difference model, and debris trails map as areas of elevation gain. 
However, it is worth noting the range of surface changes observed 
in this event. Some landslides have well-defined areas of continu-
ous surface loss and gain that match the mapped regions (source, 

Fig. 6   Before/after imagery and surface difference maps. A Before/
after event satellite imagery. B Oblique view of UAV DSM with ortho-
photo. C, D UAV and SETSM difference maps with mapped land-
slides. The northern area of the selected area highlights areas of 
patchy, shallow surface change associated with ravel and shallow 
rock slides while the southern area is an example of well-defined 
continuous areas of surface loss/gain associated with deeper rock 
slides. E UAV—areas of volume loss only within the mapped source 
areas

◂
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and runout) of individual landslides. Other regions are patchy—
meaning that the source region (as defined from optical imagery) 
is a mixture of smaller regions of elevation loss and elevation gain. 
These regions tend to have much smaller elevation changes (i.e., 
less than 5–10 m). We associate these regions of shallow and dis-
continuous surface change with mostly ravel or collection of spa-
tially complex small rock slides—failure mechanisms that likely 
differ from the larger more coherent landslides defined by regions 
of continuous surface elevation loss and gain. These slope failures 
are eliminated by our subsequent statistical analysis by exclusion 
of low volume-to-area ratios (< 0.4) (Supplementary Information).

Comparison of post-earthquake DSM results (UAV vs. SETSM 
models) is consistent but the SETSM data is more noisy (Figs. 6 
and 7). Generally, spatial patterns of surface gain/loss are similar 
between the two models even for detailed patterns of patchy, shal-
low landsliding (Fig. 6). Mean differences between the two rasters 
show no systematic shift nor skewness. For example, UAV site L3 
has a mean offset of -0.08 m and a std dev of 3.12 m (Fig. 7; Supple-
mentary Information). Typically, differences that are greater than 
the standard deviation (> 1.2 m) occur in two conspicuous patterns. 
Positive elevation anomalies (higher in the UAV model compared 
to the SETSM model) appear as small round patches on hillslopes, 
which we infer to be related to the difference in vegetation height 
between the two respective sampling periods (December 2015 vs. 
April 2016). Negative elevation anomalies occur in the channel 
(lower in the UAV model compared to the SETSM model), which 
we interpret as sediment evacuation by fluvial process between the 
two respective sampling periods (December 2015 for the satellite 

imagery vs. April 2016 for the UAV imagery). The later interpreta-
tion is supported by observations in the successive optical images 
where the low-order channels were loaded with sediment shortly 
after the earthquake, many of which can be observed as evacu-
ated in later imagery dates. The comparison of landslide volumes 
between the two models is also consistent but becomes noisy for 
small landslide volumes or small areas within larger ones (Fig. 7). 
For example, across individual landslides, there are identical coher-
ent patterns of surface change as highlighted by a smoothed con-
tour model (Fig. 6). Larger landslides are more consistent between 
the two models, and difference between the two models increases 
with decreasing landslide volume with some scatter about a 1:1 line 
and no systematic bias between the two models (Fig. 7).

Landslide mechanism relative to geology, fault proximity, and 
ground motions

Failures occurred primarily in the limestone units of the Paxos 
zone, which dominate the region of landsliding (Fig. 1). Near the 
northern portion of the study area, limestone units of the Ionian 
zone limestone also failed. A small portion of the study area cov-
ered by Miocene age flysch rocks (sandstones, mudstones, and con-
glomerates) had few failures, but also notably lower average slopes. 
Field observations suggest that the rock mass is highly tectonized 
(intensely fractured) throughout the study area, but not substan-
tially chemically weathered with thin to absent soil cover. Breccia-
tion of the rock mass is especially common where plate boundary 
fault splays of the Kefalonia-Lefkada transform are exposed along 

Fig. 7   Comparison of UAV and SETSM models. (left) Orthophotos and DSM difference point cloud for select site L3 (n = 35 landslides). Differ-
ence values reflect difference between UAV and SETSM post-event topographic models. (right) Landslide volumes from corresponding site
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the coast or parallel to the coastline (i.e., near Athani)(Fig. 1). Based 
on field observations and measured distances to mapped active 
faults using GIS, fracturing appears to increase with proximity to 
active structures and likely has a strong influence on the local geo-
technical properties of the rock mass (Fig. 8). Such observations are 
typical of this type of climate-tectonic environment (i.e., relatively 
dry with seasonal precipitation, highly tectonically active with a 
high uplift rate and steep coastal retreat rate).

We infer representative landslide mechanisms from landslide 
geometry and volume, verified by field observation. These include 
shallow debris and rockslides and occasionally, deep-seated, rota-
tional failures (Fig. 8). Some regions of the coastline had patches of 
shallow ravel (identified as a change in texture of the ground sur-
face and accumulation of debris in adjacent channel). Some regions 
of the coast did not fail at all. We identify a sub-set of landslides 
with well-defined, simple geometries (i.e., a continuous region 
of surface lowering that is well approximated as an ellipse in the 
source regions, with corresponding positive regions of debris depo-
sition located downslope) (Medwedeff et al. 2022). These tend to 
correlate with the deeper landslides, with mean depths of 1 – 10 m. 
Other landslide regions are typified with a much more complex pat-
tern of surface lowering and irregular landslide area. Notably, many 
landslides have a complex pattern of volume loss/gain from the 
difference models as opposed to a simple source/ runout geometry. 
Such complex geometries typify areas of shallow landsliding (i.e., 
less than 5 m depth). In some cases, shallow landsliding can be iden-
tified in the optical imagery as subtle change in image characteris-
tics in the source region. However, more commonly, shallow land-
sliding is mainly recognized by new debris deposition observed in 
nearby stream channels, or debris fans at the base of slopes, because 
the steep slopes were not vegetated prior to the earthquake and 
thus visual changes to the source area are difficult to detect. Runout 

(extent of debris deposition) tends to be constrained by the coastal 
escarpment, with an unquantified amount of material deposited in 
the sub-marine environment.

Lithology, strong ground motion, and slope are primary factors 
that control the frequency and size of co-seismic landslides. Here 
we consider 2D histogram cross plots of landslide volume com-
pared to peak ground acceleration (PGA), mean and max slope of 
landslide polygons, and latitude (Fig. 9). Lithology is not considered 
because nearly all mapped landslides occur in similar composition 
Mesozoic limestone units (Fig. 1). As with landslide area, volume 
is lognormally distributed with a characteristic landslide size of 
about 103 m3, with some skewness toward smaller landslide vol-
umes. When compared to PGA, we discern no pattern with respect 
to landslide volume but recognize there is narrow range of PGA 
values over steep topography for this event (0.32 g-0.37 g). Aver-
age and maximum slopes within landslide volumes are normally 
distributed with a slight skewness toward steeper slopes. This pro-
duces an overall trend in increasing volume with increasing slope, 
which is more readily seen in the maximum compared to the mean 
slope values. Last, we evaluated spatial trends, where latitude is a 
convenient proxy for distance along the coastal escarpment. Over-
all, the landslide frequency is highest in the middle of the study 
area (around 38.70 N) and decreases both to the north and the 
south. Superimposed on this pattern, there are smaller sub-regions 
that have correspondingly greater landslide frequency but do not 
necessarily have greater average landslide volumes.

Landslide inventory statistics

We also consider common statistical measures of the landslide 
inventory using frequency-area and volume-area relationships. 

Fig. 8   Field perspective of volume loss over landslide regions
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Empirical probability density estimates of landslide area distribu-
tions for individual event inventories are a typical framework by 
which we compare different events using a power-law fit to ~ 25% 
of the largest landslides (e.g., Hovius et al. 1997, Guzzetti et al. 2002, 
Frattini and Crosta 2013, Tanyas et al. 2017, 2018, Jeandet et al. 2019, 
Valagussa et al. 2019). However, landslide distributions tend to devi-
ate from power-law behavior at smaller landslide sizes, and empiri-
cal probability density bin values are skewed by bin size. Instead, 
log-normal statistical fits may be more revealing, and thus more apt 
to investigate details of the decay in landslide frequency at smaller 
landslide sizes (Medwedeff et al. 2020). A steep decay in landslide 
frequency at small sizes was thought to be related to image quality 
in early studies but has more recently continued to be observed 
for inventories with much higher spatial resolution than the modal 
landslide size (e.g., Tanyas et al. 2017, 2018), suggesting a physical 
cause (Medwedeff et al. 2020). Here, the distribution of landslide 
frequency for the smallest areas is well represented by a log-normal 
fit (Fig. 10), and we observe a less steep decay in landslide frequency 
compared to other inventories (Medwedeff et al. 2020) Supplemen-
tary Information). We attribute this observation to our high-resolu-
tion mapping methods and attention to amalgamation, which may 
suggest that other inventories still contain some bias at small land-
slide sizes. Additionally, we observe thin soils and fractured lime-
stone regolith with relatively limited chemical weathering or soil 
formation. Back-analysis of the landslide inventory using pseudo-3D 
geometries suggests that the material involved in landsliding has 
relatively high friction and very low cohesive properties (Gong et al. 
2023), which may also contribute to the less steep decay in landslide 
size frequency for this particular inventory compared to others.

Landslide area-volume relationships for landslides mapped 
within the areas that have both UAV and SETSM models have sta-
tistical properties that are common for mixed soil-rock and rock 
inventories based on limited number of manually measured land-
slide volumes (Larsen et al. 2010) (Fig. 11). Typically, inventory data 
report the plan-view area (2D area) for the entire mapped landslide 
or less commonly, separately mapped source area (Roback et al. 

2018; Massey et al. 2020a, b). Here we additionally consider the 3D 
area (i.e., sloped area) as well as a summation of area of negative 
elevation change only within the mapped polygon (“area of nega-
tive volume”).

We determine a linear relationship between log volume and 
log area based on different assumptions of area. We exclude 
very thin landslides (volume/area ratio < 0.4) as these land-
slides have very high uncertainty and are also likely to have a 
different mechanism such as raveling or shallow, discontinuous 
reactivation of previously disturbed material. First, we consider 
the typical scaling approach of volume versus 2D mapped area 
of the full landslide using the entire dataset. Unsurprisingly, 
this yields low exponent values of γ = 1.0 and intercept values 
of α = 0.8 and 0.9 for the UAV and SETSM models respectively 
resembling bulk summary statistics from the 2016 Mw7.8 Kai-
koura earthquake-triggered landslide inventory (Massey et al. 
2020a, b) (Table 1, Fig. 11). Less scatter and steeper relationships 
are observed when using the 3D source area with exponent values 
of γ = 1.1 and intercept values of α = 0.7, and even steeper rela-
tionships are observed when using the 3D negative source area (γ 
= 1.2 - 1.6 and α = 0.02 - 0.3) (Table 1; Fig. 11; Fig. 12). Generally 
there is good agreement between the UAV and SETSM models 
for most geometries.

The range in log volume-area statistical values demonstrates 
sensitivity to methodology choices (Table 1). When we consider 
only the area of negative volume, we produce a steeper and well-
defined volume-area relationship by reducing the scatter of low-
volume estimates that might be due to debris deposition within 
the landslide area or complex patterns of amalgamated landslid-
ing in some areas that are not easily separated into independent 
source regions with corresponding debris trails. The area of nega-
tive volume results in smaller areas, because we often observe that 
volume loss occurs over just a portion of the mapped landslide 
area. The corresponding results for using the negative area show 
agreement between the UAV and SETSM models for both sources 
and full areas. We note in particular, that using only the 3D area of 

Fig. 9   2D histogram plots of landslide volume vs. PGA, latitude, and max/mean slope for the 2015 event, using the SETSM source volumes. 
Volume is lognormally distributed with a characteristic landslide size of about 103 m3 (Medwedeff et al. 2020). We also observe no pattern 
with PGA, albeit that PGA has a narrow range of values for this event. There is no correlation with mean slope, but a positive correlation with 
maximum slope. There is no discernable pattern between volume and latitude.
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negative volume produces consistent and steeper values (γ = 1.2; 
α = 0.3) compared to using the full 3D area (γ = 1.0-1.1 and α = 0.7-
0.9) further supporting the observation that areas of patchy, shal-
low landsliding and ravel introduces complexity to estimating 
average volume area scaling parameters, even for a single landslide 
event. This general relationship holds true for source areas and for 
larger landslides as well. 

Discussion
The purpose of this study is to evaluate the use of satellite and 
optically-derived DSM models for direct measurement of 3D 
landslide volumes for regionally significant events, which may be 
more rapidly and cheaply acquired compared to LiDAR and air-
borne surveys. Comparison of two datasets gives us an idea of the 
repeatability and reliability of each independent dataset: one from 
UAV and another from satellites, and each collected on dates a few 
months apart. The two datasets presented here compare favorably 
in terms of similarity in spatial patters of elevation loss and gain 

(Fig. 6) as well as individual landslide volumes (Fig. 7), which sug-
gests that optically derived DSMs are promising for future develop-
ment of 3D inventory mapping. However, both datasets likely suffer 
from overestimation of surface change because of vegetation. As 
expected, we observe a small positive bias in the difference models 
for both datasets for stable areas (Supplementary Information). We 
attribute the overall success of the DSM and difference models in 
Lefkada to the condition of the slopes studied, which are steep and 
have sparse or no vegetation. While vegetation filtering made some 
improvement on the UAV models, similar application to SETSM 
was not successful by the methods presented here. We determine 
uncertainties on our post-event DSM models to have a mean offset 
of 0.5 m (σ = 2.1 m) for the UAV datasets (excluding one region with 
systematic registration issues) and a mean offset of 1.7 m (σ = 3.5 m) 
for the SETSM models. The higher values for SETSM likely reflect in 
part, vegetation differences compared to the filtered UAV models. 
Application in more densely vegetated terrain would likely have 
different results than presented here.

Fig. 10   Landslide frequency-area relationships. Heavy tailed model fits to data from the 2015 landslide inventory (reproduced from Medwed-
eff et al. 2020)
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The volume/area ratio, rather than elevation change or volume 
alone, was a more useful discriminate on limits of detection sug-
gesting that thin rather than small landslides present a particular 
challenge. When DSM and difference model uncertainties are prop-
agated into landslide volume uncertainty, we observe that land-
slides with volume/area ratios less than 0.4 show systematic and 
exponentially increasing error. When considering field and image 
interpretation, we suggest that these thin landslides are raveling 
or otherwise chaotic(?) surface displacements that are likely not 
coherent landslide movements and may also represent ongoing 
post-event slope changes. At this scale, we are running up against 
not a limit of technology and spatial resolution, but rather a limit 
in interpreting the landsliding process itself, which likely no longer 
conforms to defining simple, individual landslide geometries at a 

range of “landslide” areas. Further, other factors complicate inter-
pretation of the smallest landslides in regional inventories. Prob-
ably the largest contributing factor is the time delay between before 
and after datasets and the likelihood of continued displacement 
of materials at the meter scale following the main shock of the 
earthquake. The issue of detection limits raises the question that 
the real cutoff may likely be a change in mechanism and unrelated 
to our technical ability to resolve surface change, and that change 
occurs not at a cutoff landslide area but rather depth and is best 
interpreted by image and field observation of slope behavior. These 
observations should prompt reconsideration of how we select the 
smallest landslide size for inclusion in regional landslide inventory 
statistics and how limits of detection are incorporated into auto-
mated 3D landslide mapping (Bernard et al. 2021).

Fig. 11   Volume-area relationships for 2015 coseismic landslides. Volume estimates were based on the integral of surface lowering within 
each manually mapped full landslide polygon. Landslide area (points) and volume uncertainty (lines) are shown. Transparent values are 
excluded from regression because of high volume uncertainty (V/A ratio < 0.4). Area-volume scaling relationships take the form of a power 
law V = αAγ, where γ is the scaling exponent, and α is the intercept in log space. (left) The area was determined as the 2D or plan view area of 
the full mapped polygon. (center and right) The area is determined as the summed 3D areas over only regions of elevation loss, i.e., negative 
areas of the mapped source polygon

Fig. 12   Volume-area relationships for 2015 coseismic landslides by landslide SETSM scene or UAV region. Landslides with high volume uncer-
tainty (V/A ratio < 0.4) are shown in grey and excluded from the regression analysis
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The Lefkada event also provided an opportunity to advance 
landslide mapping protocols as well as assess several aspects of 
landslide mapping that have been speculated to affect event sta-
tistics, such as source vs. full area mapping, 2D vs. 3D area deter-
mination and amalgamation (Li et al. 2014; Marc and Hovius 2015; 
Massey et al. 2020a, b; Bernard et al. 2021). Additionally, we consider 
a summation of area only over the area of negative elevation change 
within the mapped polygon (“area of negative volume”). Subjec-
tive decisions made in the mapping process to address amalgama-
tion also factors significantly into the determination of landslide 
frequency and commonly used statistics to measure and compare 
landslide events. Here we use a combination of features to define 
individual landslides within landslide complexes that include topo-
graphic features such as drainage divides and upslope contribut-
ing area, as well as visual features in the optical imagery of debris 
deposits. Doing so produces a log-normal distribution of landslide 
areas, and a censorship of both small and large landslide sizes, as is 
predicted by models considering the cohesion and depth dependent 
strength of near surface materials (e.g., (Frattini and Crosta 2013)) 
and the distribution of different hillslope lengths in a natural land-
scape (Medwedeff et al. 2020). We observe that differences in land-
slide event summary statistics in considering 2D versus 3D land-
slide area are negligible and are smaller than the slight differences 
between consideration of source versus full areas (Table 1). We note 
consideration of 3D area also introduces the complexity of scale, as 
the 3D area becomes exponentially larger for increasing DEM reso-
lution. Thus, the measure of the 3D area for high-resolution datasets 
reflects in part, the roughness of the topographic surface rather 
than simply the difference between a slope-averaged area across a 
landslide compared to its 2D planform projection. Some thought as 
to the appropriate scale for averaging 3D slope values may improve 
results especially for individual landslides, but at present it seems 

to present a minor contribution to summary statistics measured 
across several orders magnitude scale. We find that consideration 
of the “area of negative volume” provided the greatest consistency 
in volume-area scaling, which we interpret to reflect a previously 
unrecognized aspect of determining landslide characteristics over 
a complicated failure surface.

In large landslide events, empirical V-A scaling relationships 
are typically coupled with 2D mapped landslide inventory data to 
project the total sediment volume mobilized by landslides during 
extreme events such as earthquakes and major storms (e.g., Li et al. 
2014, 2017). To our knowledge, only two other regional earthquake 
landslide inventories exist that are based on direct differencing 
methods of before/after DEMs as in this study, both describing all 
or part of the 2016 Mw 7.8 Kaikoura earthquake event in New Zea-
land (Massey et al. 2020a, b; Bernard et al. 2021). This event trig-
gered nearly 30,000 landslides and both used substantially more 
expensive deployment methods using either airborne orthophoto 
imagery or LiDAR. Compared to these studies, we derive similar 
volume-area scaling parameters when considering 2D area and 
the entire population of source polygons. However, when con-
sidering landslides > 103 m3, we derive substantially higher slope 
exponents to the volume-area scaling relationship that reflect on 
average deeper landslides than observed in the Kaikoura exam-
ple. We caution the determination of a single set of parameters to 
describe earthquake-triggered events, as the geologic condition and 
strength profile of the near surface environment likely significantly 
factors into this scaling. The methodology and completeness of 
landslide volume inventory presented here promises to improve 
these predictions by investigating controlling factors and selec-
tively applying log area-volume parameters only to appropriately 
select the total landslide area. For example, the inclusion of shal-
low landslides (< 0.4 m average depth) and ravel that are not well 
captured by statistics reported from manual volume estimates from 
field methods, will likely overestimate total landslide volume. We 
note also that while commonly not emphasized in scaling studies, 
the alpha (log-intercept) can also have a large effect on estimating 
total event landslide volume. All of this is to emphasize the com-
plexity of volume-area scaling parameters, and the sensitivity of 
these parameters to methodology, data quality, and representation 
across regional scales.

As more pre-event DEMs are becoming available, one significant 
challenge in using surface change detection for landslide events is 
the mixture of datasets (hybrid datasets) that may exist before and 
after the event, and the temporal proximity of those datasets to the 
event itself. DEM differencing from rapid deployment of UAV or 
satellite imagery coverage will also provide essential situational 
awareness during landslide disasters. Validation of satellite derived 
topography as presented here supports the use of such products as 
a cheaper and more readily available source of post-event topog-
raphy for rapid response work to natural disasters, as well as the 
potential for research-grade datasets that may be more geographi-
cally distributed.

Conclusions
Optical data are constantly improving with advancements that allow 
for higher image resolution, ease of deployment or acquisition, and 
increases in the frequency of repeat measurement for which specific 
forcing of geomorphic change can be more confidently assigned. 

Table 1   Log–log volume-area scaling parameters. Values are 
reported for slope and exponent values (γ, ⍺). Bold values are shown 
in Figs.  11 and 12 with all plots with fits shown in Supplementary 
Fig. 4 and 5.

Vol-2D area Vol-3D area Vol-neg 3D 
area

Full polygon—fit to entire population 

UAV 1.0, 0.9 1.0, 0.9 1.2, 0.3

SETSM 1.0, 0.8 1.0, 0.7 1.2, 0.3

Source polygon—fit to entire population

UAV 1.1, 0.6 1.1, 0.7 1.2, 0.3

SETSM 1.1, 0.9 1.1, 0.7 1.2, 0.3

Full polygon—fit to > 103 m2

UAV 1.3, 0.1 1.2, 0.1 1.3, 0.1

SETSM 1.1, 0.4 1.2, 0.3 1.3, 0.1

Source polygon—fit to 103 m2

UAV 1.4, 0.1 1.4, 0.03 1.6, 0.02

SETSM 1.3, 0.1 1.3, 0.1 1.4, 0.1
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Using two post-event datasets that were differenced from the same 
pre-event DEM allowed us to compare the resulting difference mod-
els as well as statistics of each independent difference model to assess 
the resulting 3D landslide inventory in terms of fidelity of measure-
ment, minimum mapping resolution, and volume uncertainty. We 
find good agreement between DSM data types, which provides vali-
dation for the proposed methods for creating 3D landslide invento-
ries. The UAV models performed with less variability (lower uncer-
tainties) than the SETSM models likely due to better registration, 
higher resolution, and success of vegetation filtering programs.

The completeness and high resolution of the volume inven-
tory allowed us to evaluate commonly cited statistics for landslide 
event inventories in new ways, such as exploring aspects of previ-
ous workflows that have been speculated to influence inventory 
scale statistics but not previously analyzed. These include analy-
sis of source areas compared to full landslide areas, use of 2D 
(planview) landslide area versus 3D slope area, and amalgamation 
of adjacent landslides that coalesce into complicated landslide 
complexes. We demonstrate the sensitivity of statistical relation-
ships to topographic resolution, accurate registration of before/
after images, and estimation of 2D (plane) area versus 3D surface 
area. Across many portions of the inventory, our findings reveal 
complex patters of surface change that often are not well approxi-
mated by a simple landslide slip surface geometry and question 
the utility of landslide frequency as a statistical measure. These 
areas of shallow change account for a large percentage of the total 
landsliding area but have proportionally small contribution to the 
total landslide mass. When considering discrete landslide masses, 
if the highly uncertain shallow change is removed from the vol-
ume area relationship, we predict equal to larger total volumes 
than previous relationships based on field data alone. We also find 
that defining landslide areas as the areas where only volume loss 
was calculated, as opposed to the entire “source” area, significantly 
reduces scatter of the volume-area relationship. When restrict-
ing analysis to only the most frequent landslides and larger (A = 
> 103 m2), produces a value (γ = 1.3–1.4) equal to the global value 
of rock rather than soil. This result challenges a commonly held 
notion that earthquake-triggered landslides are only shallow, and 
therefore do not contribute to landscape denudation by detach-
ment of intact bedrock.

As we eliminate the selection bias of ground-based field studies 
that focus only on few, well-defined landslides and by enhancing 
2D image-based landslide inventories to account for the magni-
tude of elevation change, new patterns of ground failure become 
evident and will require adaptation in mapping and statistical data 
interpretation.
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