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Abstract Knowledge of landslide volumes is needed to connect
landslide trigger, geometry, and mechanism with the mechanical
characteristics of the displaced soil and rock masses. While land-
slide volume inventories of widespread events are scarce, increas-
ing availability of high-resolution imagery time-series presents
new opportunities for developing volume inventories in terms
of scale and resolution. Here we present a novel 3D landslide vol-
ume dataset using topographic differencing methods to evaluate
the potential for such studies in future hazard and geomorphic
research. Remotely sensed stereo optical imagery collected shortly
after the 2015 Lefkada M,,6.5 earthquake event in western Greece
was used to create two post-event DSM surfaces using Worldview-3
satellite images with the SETSM algorithm and UAV-based opti-
cal imagery using Structure from Motion (SfM). We demonstrate
good agreement between methods for mapping of ~ 700 landslides.
Elevation change more accurately identifies source areas on steep
slopes compared to imagery alone, distinguishes deeper landslid-
ing from shallow ravel, and reveals complex patterns that are not
well approximated by simple landslide slip surface geometries. Sta-
tistical relationships are sensitive to aspects of the methodology,
namely topographic resolution, accurate image registration, and
estimation of 2D (plane) area versus 3D surface area. These analyses
also raise the question of what constitutes a single landslide mass in
these events and thus the utility of landslide frequency as a statisti-
cal measure. As we achieve resolution that surpasses ground-based
field studies and removes the selection bias of focusing only on
select well-defined, deep landslides, new patterns of ground failure
emerge to which mapping and statistical data interpretations will
need to adapt.

Keywords Landslide inventory - Co-seismic landslides - DEM
differencing - Photogrammetry

Introduction

Landslides are complex geologic phenomena that displace rock
and/or soil downslope causing significant hazard in many environ-
ments across the world. Widespread landslide events are commonly
triggered by large earthquakes or intense storms, which cause hun-
dreds to tens of thousands of landslides (Malamud et al. 2004) of
varied failure mechanisms (Varnes 1978; Hungr et al. 2014). Under
these conditions, slope failure is induced by horizontal seismic
accelerations or changes to the hydrodynamic regime of the near
surface respectively resulting in a range of landslide sizes that span
many orders of magnitude. Generally speaking, the volume of an
individual landslide will dictate how far the slide mass travels, how
it interacts with other hillslope materials, and how it contributes
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to sediment loading in nearby colluvial and fluvial channels. As
such, measuring and predicting the size and location of landslide
triggering provides insight to material properties and landslide
mechanics where knowledge of the forcing event can be estimated.
Importantly, these data can be used to classify landslide type and
mechanism (Alberti et al. 2022), to assess material properties of the
shallow subsurface or conditions (e.g., water pressures, external
loads) at failure through back-analysis (Kallimogiannis et al. 2019,
Bunn et al. 2020, Gong et al. 2021, Alberti et al. 2022), as well as to
assess runout potential and downslope effects (Costa and Schuster
1988; Crosta et al. 2003; McDougall 2017; Fan et al. 2020). Increased
focus on the landslide-sediment cascade has highlighted the impor-
tance of landslide connectivity to river systems, particularly in
understanding how the volume and grain size of landslide debris
affect channel morphology and conveyance capacity, which can in
turn lead to increased flooding hazards.

While such assessment of landslides on an individual basis
is often used in engineering, the forefront of study for landslide
mechanics involves analysis of large landslide populations of
hundreds to thousands of simultaneous landslides over large geo-
graphic areas that can result in geospatial estimates of strengths
and landslide risk across larger regions. These events present new
opportunities, albeit with some challenges. For example, estimates
of landslide volume form the basis of slope stability back analysis,
as well as their mobility, both of which are critical considerations
when assessing infrastructure resiliency (Postance et al. 2017, Miele
et al. 2021). Back-analysis of landslides can be used to derive mate-
rial parameters and the conditions (e.g., water pressures, external
loads) under which the landslide occurred (Alberti et al. 2022).
These events provide the opportunity to make these calculations
under similar conditions, across regional gradients in surface prop-
erties and can provide necessary input to estimation of future slope
hazards (Jones et al. 2023).

However, measurement of the size of the displaced slide mass,
failure plane, and material properties are notoriously time-consum-
ing and therefore expensive. Current practice uses a small number
of landslides investigated by field studies at best because depth
measurements are time-consuming and therefore by necessity
sample only a relatively small fraction of the total landslide popu-
lation. Typically, this subset of measurements is used to develop a
volume-area relationship that is then extrapolated to a complete
inventory of 2D (plan view) mapped areas from imagery (e.g.,
(Larsen et al. 2010). However, this approach can have a selection
bias toward larger, deeper landslides. For example, investigations
conducted through the early 2000s generally relied on relatively
basic surveying equipment such as measuring tape and a levelling
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rod (e.g., Wieczorek et al. 1985, Barnard et al. 2001, Gabet and Dunne
2002). Most studies that detail their field techniques simplify land-
slide geometry to an ellipse, measuring the major and minor axes
to estimate scar area, and multiplying by an average depth to derive
volume. It has been noted that this simplification is somewhat
subjective and crude for landslides with rough or complex source
regions, leading a minority of studies to instead measure longitu-
dinal segments within the source area (May 2002; Imaizumi and
Sidle 2007).

Considering the possibly thousands of individual landslides,
measurements of landslide geometry present a technological
challenge because such studies require high-resolution detail of
the land surface before and after the event, and detailed measure-
ment of subsurface properties, typically from invasive exploration
(e.g., boreholes) or geophysics, both of which are rarely available.
Benchmark datasets that include accurate volume estimates from
large landslide events following earthquakes and storms are only
recently emerging as high-resolution repeat topography imaging
becomes more commonplace (Massey et al. 2020a, b). As imagery
datasets have become more commonly available for mapping
landslide inventories, visual, and automated methods have been
developed that compare before and after optical or radar imagery
from landslide-triggering events (Holbling et al. 2017; Alvioli et al.
2018; Roback et al. 2018; Amatya et al. 2019, 2021; Burrows et al.
2019; Massey et al. 2020a, b; Catani 2021). As such, much knowl-
edge has been gained about the geospatial characteristics of land-
slide populations. Comparison between digital elevation models
(direct differencing of DEMs) that were created before and after
a landslide event, is an advancement to field-based measurements
of landslide volumes (Kerle 2002; Tsutsui et al. 2007; Lacroix 2016;
Massey et al. 2020a, b). DEM differencing, or subtraction of pre-
and post-landslide DEMs, allows one to calculate volumes for any
arbitrary landslide geometry, and over a larger, more representative
area than field expeditions could ever reasonably cover. Such dif-
ferencing of topography allows for estimation of volume for land-
slides that have mostly or completely evacuated material from their
source plane. However, errors associated with poor geo-referencing
and/or thick vegetation coverage in addition to the resolution of
pre-event DEM are significant challenges (Kerle 2002; Tsutsui et al.
2007; Martha et al. 2010; Lacroix 2016). While increasing availability
of stereo-satellite imagery and UAV imagery for the generation of
post-event topography from photogrammetry methods has fueled
many new datasets, further analysis is needed to better explore the
influence of data type and quality, as well as assessment of differ-
encing calculations.

The availability of high-resolution pre- and post-event topog-
raphy for a moderate earthquake event in the island of Lefkada in
western Greece offered the opportunity to advance topography dif-
ferencing methods and landslide mapping for 3D landslide geom-
etries using emergent methods for rapidly acquiring cheap DEM
difference models (Zekkos and Clark 2019). While these models
lack the precision of LiDAR, the ability to rapidly deploy such tech-
niques after a disaster and the substantially lower cost make these
methods promising applications in hazard research (Zekkos et al.
2018b) and would greatly expand datasets for geomorphic study. In
this paper, we develop two post-event topographic datasets avail-
able for this event and explore a range of differencing algorithms

\ Landslides

to detect surface change and calculate landslide volume. A landslide
inventory was developed using before and after satellite imagery
with field verification and is used as a part of this study. Products of
the topographic differencing were then investigated for inventory
area and volume statistics and geospatial relationships, with par-
ticular attention to criteria that can be used to identify individual
landslides and the resulting metrics commonly used to describe
large landslide event inventories.

The 2015 M,,6.4 Lefkada earthquake event

In recent decades, two strong earthquakes in 2003 and 2015 associated
with the Kefalonia-Lefkada Transform Fault in western Greece, pro-
duced damage in this area with associated large landslide events and
liquefaction in the port of Lefkada. Slip along a sub-vertical dextral fault
was manifested in the 2015 earthquake, which occurred on November 17,
2015,07:10 GMT (09:10 local time) and is estimated to be M; 6.0/M,, 6.5
at a depth of 11 km (Ganas et al. 2015,2016). The epicenter of the earth-
quake is located onshore of the island, to the north of the port village of
Vasiliki (Fig. 1). The focal mechanism suggested motion on a fault plane
oriented parallel with the western coast of the island. The recorded
PGA at the town of Vasiliki was 0.37 g in the North-South direction,
whereas in the town of Lefkada it was o.10 g in the North-South direc-
tion and lower in the East-West direction. The US Shakemap (vers 2)
is a relatively well-constrained model using station data in the vicinity
of the landslides that provide an improved estimate of ground motions.
Developed by USGS, this version incorporates strong motions recorded
in three stations provided by the Institute of Engineering Seismology
and Earthquake Engineering (locally known in Greece as ITSAK) in
Greece including Chortata, Aghios Nikitas, Lefkada town, and Vasiliki
town stations (Fig. 1, Supplementary Information). Peak ground accel-
erations in the area affected by the landslides (along the coastline),
varied from 0.25 to 0.35 g and peak ground velocities varied from 27
to 45 cm/s. These ground motions were concentrated over the steep
western coastline of the island and generated ~ 700 landslides during
the timespan of the earthquake.

Methods and datasets

A 2.5D DEM was used in the analyses to make pre-/post-earthquake
surface comparisons by topographic differencing. The pre-earthquake
DEM was generated in 2015 for the Hellenic Cadastre as a photogram-
metric sub-product of orthophoto creation from aerial photo strips for
the whole region of Greece with a ground sampling distance of 2-m
pixel size. The geometric accuracy of the product is RMSEz<2.00 m
and absolute accuracy<3.92 m for a confidence level of 95%. The raster
DEM was converted to a 3D point cloud LAS format to be compat-
ible with 3D spatial products extracted from UAV surveys for 3D ter-
rain analysis (for point cloud density see Supplementary Information
Table S2). Two post-earthquake DSM datasets were generated using
(1) Unmanned Aerial Vehicles (UAVs) equipped with optical cameras
and Structure from Motion (SfM) algorithms, deployed shortly after
the earthquake along the majority of the western coastline (November
2015 and April 2016), and (2) satellite stereo imagery and an open-
source code (SETSM) which was developed to extract DSMs from
paired orthoimages collected a month after the earthquake along the
entire coastline (December 2015) (Fig. 1).



& Greece
Lefkada E.- Gre .
Island . 2 '

Geology

g ’ Recent or Unmapped

S|® Scree & Talus

31 consolidated Scree
Cenozoic |- Flyschoid Sediments

Cretaceous | Limestone (Paxos)
Jurassic | Limestone (lonian)

a

Symbols
& Landslides (This study)
A Strong Motion Stations
‘ﬁ( Epicenter (2015)

\ / Active Faults

Fig. 1 (A) Satellite and UAV DSM coverage. (B) Geologic setting of the 2015 M, 6.5 Lefkada earthquake

Post-event topography: generation of UAV datasets

We leveraged field data generated from deployments using quadro-
tor Unmanned Aerial Vehicles (UAVs) equipped with optical cam-
eras over nine areas of interest along the western coastline (Fig. 1).
The imagery was collected using manual controlled gridded flight
paths and was stitched together to create 3D models. For the first
deployment date on November 19, 2015, only one disaster-affected
area (Egremni beach L3/4) was mapped by capturing video using
DJI’s Phantom 2 Vision + quadrotor equipped with a 14 MP 1/2.3"
image sensor camera. For the rest of the deployment dates, nine
areas were mapped along the western coast of Lefkada using DJI’s
Phantom 3 Pro, featuring a 12.4 MP 1/2.3" image sensor camera,
(April 13, 2016) (Zekkos et al. 2017), capturing 4 K videos along
manually controlled gridded flight paths. Extracted frames from
video clips for the SfM reconstruction stage maintain 70% side and
80% front overlap. Video capturing was the selected acquisition
method due to drone limitations in battery capacity and transmis-
sion range. This method allowed for covering larger areas in less
time during each flight. Subsequent deployments that were not part

of the focus of this paper, were conducted fully autonomously using
photo imagery collected on a gridded pattern and had comparable
results. The location of the UAV study areas is shown in Fig. 1. Fast-
static GPS measurements of ground control points with an abso-
lute coordinate accuracy of 1-2 cm were conducted for some of the
surveyed areas, mostly along the top of the landslide areas where
access was possible. No GCPs could be measured near the bottom,
along the coastline, due to accessibility issues. For fast-static meas-
urements, the Trimble 5800 L1/L2 GNSS receiver was used. Greek
Grid coordinate system was implemented for all measurements and
converted to WGS84 UTM 34N projection for compatibility with
satellite imagery.

Terrain analysis conducted for each site comprises of the
extraction of 3D Point Clouds and orthophotos and DSMs using
the Structure-from-Motion (SfM) photogrammetric and com-
puter vision methodology with overlapping optical imagery
(still photos or video frames) collected using the UAVs as input
(Fig. 2). The SfM methodology is a well-established technique
(Ullman 1979; Snavely et al. 2008; Westoby et al. 2012), with
applications to topographic differencing to infer geomorphic
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Fig.2 DSM models derived from UAV and satellite imagery data. Examples of 2.5D DSMs from three of the eight mapped UAV areas. Extrac-
tion of 3D Point Clouds, orthophotos, and DSMs used Structure-from-Motion (SfM) methodology with overlapping optical imagery collected
using the UAVs as input. Satellite imagery collected by the Worldview-3 satellites by Digital Globe Inc. after the earthquake, on December 28,
2015, was also used for the creation of post-earthquake DSMs with a Ground Sampling Distance (GSD) of 10-30 cm. Four stereo-pairs cover-
ing the west coast of Lefkada were used in this study (as shown in Fig. 1). The resolution of the imagery was 30-50 cm allowing for identifica-

tion of landslide features that are at least 10 m? in average dimension

processes (Fonstad et al. 2013; Mancini et al. 2013) and to track
displacement of single large landslide complexes (Niethammer
et al. 2012, Lucieer et al. 2014). Its specific implementation in this
study site has been described in detail in (Zekkos 2018b). The
process involves detecting and matching common features as
keypoints across multiple overlapping images, estimating the
relative positions and orientations of the cameras, and using tri-
angulation to reconstruct the location of 3D points. This process
involves intersecting the lines of sight (rays) from the camera
centers through the keypoints in the images. Bundle adjustment
optimizes the 3D reconstruction and camera parameters to mini-
mize re-projection errors, which refer to the difference between
the observed and predicted image positions of the 3D points.
For improved accuracy and geo-location, ground control points
(GCPs) can be used. These points are established in the field and
identified throughout the photoset. The final step uses stereo-
matching techniques to generate a dense point cloud or mesh
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from the sparse set of reconstructed points, where texture map-
ping can be optionally applied for detailed and realistic 3D mod-
els. Ground sampling distance for the spatial products generated
ranges from less than 10 cm near the top of the slope to ~30 cm
due to the significant terrain elevation changes (of about 200 m
on average).

Post-event topography: generation of satellite-based DSM
(SETSM)

Satellite imagery collected by the Worldview-3 satellites by Digital
Globe Inc. (now Maxar) about one month after the earthquake, on
December 28, 2015, was used for the creation of post-earthquake
DSMs and for interpreting and identifying co-seismic landslide
polygons. Four stereo-pairs covering the west coast of Lefkada were
used in this study (as shown in Fig. 1). The resolution of the imagery



was 30-50 cm allowing for identification of landslide features that
are at least 10 m” in average dimension.

For DSM extraction, the open-source Surface Extraction with
TIN-based Search-space Minimization (SETSM) methodology
(vers. 3.2.7) developed by (Noh and Howat 2015, 2017) was imple-
mented, which is based on a combination of the vertical line locus
method (Schenk 1999) and an adjustment of the rational polyno-
mial coefficients that describe the satellite orbit to produce surface
models. The SETSM algorithm has been applied previously for
development of the ArcticDEM, enabling glacier change detection
studies from topographic change models (Abdullah et al. 2015; Dai
et al. 2018). Recent applications of the SETSM algorithm in geo-
science include geomorphology (Atwood and West 2022, Corsa
et al. 2022), volcanology (Dai et al. 2022), and glaciology (King
et al. 2020, Melling et al. 2024). The SETSM methodology has been
implemented and described previously by the authors for surface
fault and landslide displacements in the Kaikoura 2016 earthquake
in New Zealand (Zekkos et al. 2018a). Four 0.5-m raster resolu-
tion DSMs were created and cropped inside the area of interest, as
shown in Fig. 1A.

A major issue when performing analyses using 3D models gen-
erated with SfM and SETSM is that the model includes all visible
features, including vegetation and structures, and these features
may obscure the bare earth ground. In this study, vegetation within
the landslide areas and along the steep coastline was sparse. Still,
two different vegetation removal algorithms were tested to create
bare earth models (DTMs) for all UAV- and SETSM-mapped areas.
To assess how accurately the various algorithms remove vegeta-
tion, a sample area within the UAV 3D point cloud was selected
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and vegetation points were manually classified carefully to compare
the results to the vegetation removal algorithms. The sample 3D
Point Cloud was derived with 2 classes, vegetation and bare earth
ground (Fig. 3).

The first algorithm that was tested is fully automatic and relies
on Agisoft Metashape SfM’s software machine learning techniques
to automatically classify points in various classes (high vegetation,
low vegetation, buildings, ground, roads, etc.). No training of the
algorithm was required and the classification results can only be
altered manually. By running the classification tool for the sam-
ple area, only top parts of large trees were classified as vegetation,
leading to poor classification results for ground and vegetation
points, as shown in Fig. 3. The second algorithm that was tested is
Cloudcompare’s CANUPO classifier. CloudCompare is a 3D point
cloud open-source processing software and the CANUPO classifier
plugin serves as a method to classifying a point cloud. The CAN-
UPO classification algorithm relies on geometric characteristics of
features and not RGB attributes of the points. The user manually
creates unique classifiers (by training them on small samples) and/
or applies one classifier at a time on the point cloud to separate it
into two subsets. To train the classifier, polygons from vegetated
areas and clear terrain were selected with an effort to select repre-
sentative polygons of the real asset class (small and large elements,
different species, different ground cover, etc.). The classifier is then
executed with previous training sets generating for each point in
the cloud, two scalar fields: one for the class and an additional with
the classification “confidence” value for each point so that the user
can quickly identify problematic cases. The CANUPO classification
method was also implemented for the SETSM dataset within the

UAV Agisoft - Auto
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Fig.3 Classification comparison between Agisoft UAV, CANUPO UAV, and CANUPO SETSM
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same sample area. The lower dataset resolution (50 cm) compared
to the UAV point cloud (~ 10 cm) and noisy SETSM output made it
more challenging to geometrically classify ground and vegetated
areas. For the UAV point cloud, CANUPO performed relatively well,
though some sparse noise points remain inside the vegetation class
that required cleaning to create the Digital Terrain Model. CANUPO
generally outperformed classification based on RGB and HSV color
filters, which left outlier and generally noisy results.

Further optimization is possible by improving training sets,
identifying more classes and better-selecting object scale samples.
The Agisoft Metashape automatic classification algorithm on the
UAV data did not perform well with problems probably associated
with resolution of model and the steepness of the terrain. When
applied to the SETSM point cloud, CANUPO classification did a
poor job identifying vegetation points, mostly due to lower resolu-
tion dataset and due to the challenges in selecting characteristic
sample polygons for terrain and vegetation. Removing vegetation
from this dataset results in a point cloud with large holes, leading
to significant coarsening of the resulting Digital Terrain Model. A
detailed qualitative and quantitative evaluation of the different clas-
sification techniques was made using confusion matrices and vari-
ous metrics of success such as accuracy, positive predictive value,
negative predictive value, recall , specificity, and F1 score, and this
work is described by Zekkos and Clark (2019). On the basis of the

Amalgamated Landslides

results, the CANUPO classifier was implemented to remove veg-
etation from all UAV 3D point clouds. Data gaps left by vegetation
removal were filled by triangulation during the 3D TIN creation
in ArcMap. For the SETSM datasets, it was decided not to remove
vegetation, because of (a) the poorer CANUPO classifier results that
would cause large gaps in the digital elevation model; and (b) the
errors associated with vegetation were not considered critical for
volume calculation of landslides because steep slopes have sparse
to no vegetation based on imagery and field inspection.

2015 landslide event inventory development

Before/after event date imagery from WorldView 3 (Digital Globe,
Inc) satellites was the main basis for identifying landslides related
to the 2015 earthquake event (Fig. 4) since they covered the entire
study area. This imagery provided up to 0.3 m resolution from
which changes to surface vegetation, albedo, and roughness were
used to identify landslides triggered by the earthquake. Landslide
morphology, which included head scarps, slump blocks, debris
scour, and debris deposition, were also recognized and used to
guide landslide mapping. Detailed perimeter boundaries were
manually mapped onto orthorectified, pan-sharpened imagery
using GIS software. Over 700 landslides were identified, from which

Separation of amalgamated landslides using high-resolution raster data
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Fig.4 Landslide inventory development. (left) Low-res satellite imagery depicting contiguous areas of landsliding with amalgamation and no
separation between source and runout. (center and right) Raster data derived from the topography model used in combination with hydro-
logic flow paths, flow direction, and optical imagery to differentiate amalgamated landslides and to define source regions (dashed lines)
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both their polygon perimeter (full areas) and source areas were
individually mapped.

In areas of dense landsliding, particular attention was paid to
the effect of amalgamation (Marc et al. 2015) (Fig. 4). While opti-
cal characteristics were the primary criteria used to identify land-
slides, additional characteristics of the topography (determined
from slope, aspect, and flow accumulation rasters) were also used
to separate individual landslides by recognizing minor ridge seg-
ments in the topography and the orientation of debris scour/dep-
osition (Fig. 4). In addition, cm-scale imagery/ topography from
eight areas of UAV survey along the coast, supplemented mapping
efforts (Fig. 4). 3D perspectives using a 5-m DEM and UAV-gener-
ated topography were also used to identify boundaries between
adjacent areas of landsliding. Typically, distinct debris cones could
be recognized from which the uphill contributing landslide areas
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were distinct (Fig. 5). The results from the DEM differencing were
also considered in refining landslide boundaries, especially in areas
where vegetation was sparse or reactivation of previous landsliding
was unclear from imagery alone.

DEM differencing models and landslide volume estimation

Landslide volume estimates were determined from differencing of
pre- and post-earthquake surface models and interpreting vertical
surface elevation change over the mapped areas of landsliding.
Two post-event models (comparison surfaces: UAV and SETSM)
were used to develop (1) difference surface models and (2) land-
slide volume inventories relative to the pre-earthquake Hellenic
Cadastre 2 m DEM (2015) as a reference surface. The resulting
difference raster represents vertical surface change between the
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Fig.5 Example surface difference maps from UAV areas. (left) Coded areas refer to either surface elevation gain loss (blue) or gain (red) in the
surface difference map. (center) Elevation loss in landslide source region. (right) Landslide volume summed over total landslide area

Landslides |



| Original Paper

arthquake
5/2015)

>~

 Figure 6859
% . &5

et A

Landslides
2015

"® UAVimagery/DSMmodel &
" BE (April 2016) 1%
T

Landslides
e 2015

Meters = 2003

Elevation
Change (m)

Lefkada |
. Island

(e

\ Landslides



«Fig. 6 Before/after imagery and surface difference maps. A Before/
after event satellite imagery. B Oblique view of UAV DSM with ortho-
photo. C, D UAV and SETSM difference maps with mapped land-
slides. The northern area of the selected area highlights areas of
patchy, shallow surface change associated with ravel and shallow
rock slides while the southern area is an example of well-defined
continuous areas of surface loss/gain associated with deeper rock
slides. E UAV—areas of volume loss only within the mapped source
areas

two-time instants, which we sum as volume loss due to landsliding
(surface lowering) and volume gain due to debris deposition (sur-
face rise) over the areas of mapped landslides from the imagery
analysis (Fig. 5). All raster grid models (pre-quake DEM and post-
quake SETSM DSM) were converted to 3D point clouds in Cloud
Compare, preserving grid resolution, and the pre-quake DEM was
also converted to a TIN surface model in Cloud Compare. Both
the SETSM and UAV point clouds were registered to the pre-quake
TIN in Cloud Compare by first clipping to the approximate area
of the reference surface, and then using an Iterative Closet Point
(ICP) algorithm—a rigid body transformation that is comprised
of a translation and a rotation that minimizes the mean square
error between a series of selected pair points. Each UAV area
and SETSM scene was aligned individually, with some variation
in the resulting goodness of fit between scenes (Supplementary
Information). As described previously, vegetation was removed
from UAV 3D point clouds using CANUPO classification, but no
such filtering was performed on the SETSM models. This method
has been used previously for landslide monitoring and mapping
tectonic deformation with LiDAR point clouds (Teza et al. 2007,
Nissen et al. 2012), but to our knowledge is the first application of
the ICP algorithm to a catastrophic landslide event to determine
volumes from hundreds of simultaneously generated landslides
that form a regional event.

Raster DSMs were then converted to LAS 3D point clouds for 3D
terrain analysis with UAV and pre-quake 3D point clouds. SETSM
3D point cloud registration was performed by applying a transfor-
mation based on the Iterative Closest Point (ICP) method in Cloud
Compare, using the pre-quake Hellenic Cadastre 3D point cloud
as reference surface. This method calculates a rigid body trans-
formation between two terrain models that minimizes the closest
point distances between them as defined by a matrix composed
of translations (t,, t,, and t, in the x, y, and z directions) and rota-
tions (a, B, and y about the x, y, and z axes). The transformation
matrix is then applied to the target point cloud and the point-wise
difference between the reference and the transformed point cloud
is calculated.

The accuracy of the difference models was evaluated by calculat-
ing the mean and standard deviation of the elevation change (more
details are given in the Supplementary Information). We consid-
ered slopes between 40 and 50° slope, which are the most frequent
slope bin that experienced landsliding in this event. We also note
that uncertainty increases with increasing slope as small horizontal
offsets are magnified by increasing slope values. Mean difference
values for the UAV sites range from -0.08 - 0.95 m and standard
deviations of 1.44 - 3.12 m, except for L2 (Supplementary Informa-
tion). The SETSM scenes had slightly larger positive mean offsets
(1.27 - 2.21 m) with standard deviations of 2.92-5.17 m. Most areas

are normally distributed with a few areas showing positive skewness.
Slight positive offsets are expected since we are differencing DSM
models with a DEM. The DSM models likely retain some values that
represent vegetation or other positive surface features that are above
the true ground surface. We were able to successfully apply vegeta-
tion filters to the UAV regions whereas the filtering of the SETSM
was not successful; therefore, it may be expected that the SETSM
have slightly larger positive offsets (and greater standard deviation
values) than the UAV models.

Aligned datasets were differenced using the ESRI ArcMap soft-
ware 3D surface differencing tool to determine areas of elevation
gain/loss. This tool creates 3D TIN surfaces from the point cloud,
or raster models, and then calculates vertical differences between
the two surfaces. The advantage of this tool is that it easily calcu-
lates 3D (slope-oriented) area as well as plan-view 2D area for each
landslide polygon, which allowed for assessment of 3D slope-areas
in the area-volume ratios. Because the UAV and SETSM models
have significantly higher resolution than the pre-quake DEM,
we set the resolution of the resulting 3D TIN to the resolution of
the pre-quake DEM (2 m), and further note that the resolution of
the DEM affects the resulting 3D area where increasing resolu-
tion (roughness) results in larger 3D areas. The 3D differencing
tool gives quantitatively similar volumes to a direct differencing
method, where point clouds are interpolated to raster formats and
landslide volumes are computed from the summation of the raster
elevation differences calculated over each grid cell within the poly-
gon boundary. The resulting surface difference model is coded as
either surface loss or gain and were used to sum areas of landslid-
ing and debris deposition respectively. From the surface difference
model, we produced (1) a surface difference raster, (2) a summation
of negative volumes for each mapped full landslide polygon, and (3)
a summation of negative volumes for each mapped source landslide
polygon. Additionally, we also calculated the (4) area of only the
negative volume that lies within each mapped landslide polygon.
Landslide volume uncertainty was calculated using the uncertainty
of the difference model (on a per grid cell basis) assuming that the
uncertainty of the elevation values are uncorrelated (Supplemen-
tary Information). Based on a Monte Carlo sampling model, we
note that the volume uncertainty scales as a function of the square
root of landslide area and that low volume to area ratio (i.e., thin
landslides with ratios of < 0.4) rather than low area alone correlate
with large errors 50-400% and are excluded from further analysis
(Supplementary Information).

Results

Surface differencing and landslide volumes

Mapped landslide depth varies considerably from less than 1 m
to areas with more than 20 m elevation loss from both UAV and
SETSM models, and with a similar range of elevation gain associ-
ated with debris deposition (Fig. 6). These elevation changes equate
to several orders of magnitude landslide volume from 10 to 10> m?,
with a modal volume of 10* m?. Largely, source areas that are identi-
fied from imagery match broadly as areas of elevation loss in the
difference model, and debris trails map as areas of elevation gain.
However, it is worth noting the range of surface changes observed
in this event. Some landslides have well-defined areas of continu-
ous surface loss and gain that match the mapped regions (source,
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and runout) of individual landslides. Other regions are patchy—
meaning that the source region (as defined from optical imagery)
is a mixture of smaller regions of elevation loss and elevation gain.
These regions tend to have much smaller elevation changes (i.e.,
less than 5-10 m). We associate these regions of shallow and dis-
continuous surface change with mostly ravel or collection of spa-
tially complex small rock slides—failure mechanisms that likely
differ from the larger more coherent landslides defined by regions
of continuous surface elevation loss and gain. These slope failures
are eliminated by our subsequent statistical analysis by exclusion
of low volume-to-area ratios (< 0.4) (Supplementary Information).

Comparison of post-earthquake DSM results (UAV vs. SETSM
models) is consistent but the SETSM data is more noisy (Figs. 6
and 7). Generally, spatial patterns of surface gain/loss are similar
between the two models even for detailed patterns of patchy, shal-
low landsliding (Fig. 6). Mean differences between the two rasters
show no systematic shift nor skewness. For example, UAV site L3
has a mean offset of -0.08 m and a std dev of 3.12 m (Fig. 7; Supple-
mentary Information). Typically, differences that are greater than
the standard deviation (>1.2 m) occur in two conspicuous patterns.
Positive elevation anomalies (higher in the UAV model compared
to the SETSM model) appear as small round patches on hillslopes,
which we infer to be related to the difference in vegetation height
between the two respective sampling periods (December 2015 vs.
April 2016). Negative elevation anomalies occur in the channel
(lower in the UAV model compared to the SETSM model), which
we interpret as sediment evacuation by fluvial process between the
two respective sampling periods (December 2015 for the satellite

imagery vs. April 2016 for the UAV imagery). The later interpreta-
tion is supported by observations in the successive optical images
where the low-order channels were loaded with sediment shortly
after the earthquake, many of which can be observed as evacu-
ated in later imagery dates. The comparison of landslide volumes
between the two models is also consistent but becomes noisy for
small landslide volumes or small areas within larger ones (Fig. 7).
For example, across individual landslides, there are identical coher-
ent patterns of surface change as highlighted by a smoothed con-
tour model (Fig. 6). Larger landslides are more consistent between
the two models, and difference between the two models increases
with decreasing landslide volume with some scatter about a 1:1 line
and no systematic bias between the two models (Fig. 7).

Landslide mechanism relative to geology, fault proximity, and
ground motions

Failures occurred primarily in the limestone units of the Paxos
zone, which dominate the region of landsliding (Fig. 1). Near the
northern portion of the study area, limestone units of the Ionian
zone limestone also failed. A small portion of the study area cov-
ered by Miocene age flysch rocks (sandstones, mudstones, and con-
glomerates) had few failures, but also notably lower average slopes.
Field observations suggest that the rock mass is highly tectonized
(intensely fractured) throughout the study area, but not substan-
tially chemically weathered with thin to absent soil cover. Breccia-
tion of the rock mass is especially common where plate boundary
fault splays of the Kefalonia-Lefkada transform are exposed along
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Fig.7 Comparison of UAV and SETSM models. (left) Orthophotos and DSM difference point cloud for select site L3 (n=35 landslides). Differ-
ence values reflect difference between UAV and SETSM post-event topographic models. (right) Landslide volumes from corresponding site
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the coast or parallel to the coastline (i.e., near Athani)(Fig.1). Based
on field observations and measured distances to mapped active
faults using GIS, fracturing appears to increase with proximity to
active structures and likely has a strong influence on the local geo-
technical properties of the rock mass (Fig. 8). Such observations are
typical of this type of climate-tectonic environment (i.e., relatively
dry with seasonal precipitation, highly tectonically active with a
high uplift rate and steep coastal retreat rate).

We infer representative landslide mechanisms from landslide
geometry and volume, verified by field observation. These include
shallow debris and rockslides and occasionally, deep-seated, rota-
tional failures (Fig. 8). Some regions of the coastline had patches of
shallow ravel (identified as a change in texture of the ground sur-
face and accumulation of debris in adjacent channel). Some regions
of the coast did not fail at all. We identify a sub-set of landslides
with well-defined, simple geometries (i.e., a continuous region
of surface lowering that is well approximated as an ellipse in the
source regions, with corresponding positive regions of debris depo-
sition located downslope) (Medwedeff et al. 2022). These tend to
correlate with the deeper landslides, with mean depths of 1 - 10 m.
Other landslide regions are typified with a much more complex pat-
tern of surface lowering and irregular landslide area. Notably, many
landslides have a complex pattern of volume loss/gain from the
difference models as opposed to a simple source/ runout geometry.
Such complex geometries typify areas of shallow landsliding (i.e.,
less than 5 m depth). In some cases, shallow landsliding can be iden-
tified in the optical imagery as subtle change in image characteris-
tics in the source region. However, more commonly, shallow land-
sliding is mainly recognized by new debris deposition observed in
nearby stream channels, or debris fans at the base of slopes, because
the steep slopes were not vegetated prior to the earthquake and
thus visual changes to the source area are difficult to detect. Runout

(extent of debris deposition) tends to be constrained by the coastal
escarpment, with an unquantified amount of material deposited in
the sub-marine environment.

Lithology, strong ground motion, and slope are primary factors
that control the frequency and size of co-seismic landslides. Here
we consider 2D histogram cross plots of landslide volume com-
pared to peak ground acceleration (PGA), mean and max slope of
landslide polygons, and latitude (Fig. 9). Lithology is not considered
because nearly all mapped landslides occur in similar composition
Mesozoic limestone units (Fig. 1). As with landslide area, volume
is lognormally distributed with a characteristic landslide size of
about 10° m?, with some skewness toward smaller landslide vol-
umes. When compared to PGA, we discern no pattern with respect
to landslide volume but recognize there is narrow range of PGA
values over steep topography for this event (0.32 g-0.37 g). Aver-
age and maximum slopes within landslide volumes are normally
distributed with a slight skewness toward steeper slopes. This pro-
duces an overall trend in increasing volume with increasing slope,
which is more readily seen in the maximum compared to the mean
slope values. Last, we evaluated spatial trends, where latitude is a
convenient proxy for distance along the coastal escarpment. Over-
all, the landslide frequency is highest in the middle of the study
area (around 38.70 N) and decreases both to the north and the
south. Superimposed on this pattern, there are smaller sub-regions
that have correspondingly greater landslide frequency but do not
necessarily have greater average landslide volumes.

Landslide inventory statistics

We also consider common statistical measures of the landslide
inventory using frequency-area and volume-area relationships.

Fig. 8 Field perspective of volume loss over landslide regions
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Fig.9 2D histogram plots of landslide volume vs. PGA, latitude, and max/mean slope for the 2015 event, using the SETSM source volumes.
Volume is lognormally distributed with a characteristic landslide size of about 10° m® (Medwedeff et al. 2020). We also observe no pattern
with PGA, albeit that PGA has a narrow range of values for this event. There is no correlation with mean slope, but a positive correlation with
maximum slope. There is no discernable pattern between volume and latitude.

Empirical probability density estimates of landslide area distribu-
tions for individual event inventories are a typical framework by
which we compare different events using a power-law fit to ~25%
of the largest landslides (e.g., Hovius et al. 1997, Guzzetti et al. 2002,
Frattini and Crosta 2013, Tanyas et al. 2017, 2018, Jeandet et al. 2019,
Valagussa et al. 2019). However, landslide distributions tend to devi-
ate from power-law behavior at smaller landslide sizes, and empiri-
cal probability density bin values are skewed by bin size. Instead,
log-normal statistical fits may be more revealing, and thus more apt
to investigate details of the decay in landslide frequency at smaller
landslide sizes (Medwedeff et al. 2020). A steep decay in landslide
frequency at small sizes was thought to be related to image quality
in early studies but has more recently continued to be observed
for inventories with much higher spatial resolution than the modal
landslide size (e.g., Tanyas et al. 2017, 2018), suggesting a physical
cause (Medwedeff et al. 2020). Here, the distribution of landslide
frequency for the smallest areas is well represented by a log-normal
fit (Fig.10),and we observe a less steep decay in landslide frequency
compared to other inventories (Medwedeff et al. 2020) Supplemen-
tary Information). We attribute this observation to our high-resolu-
tion mapping methods and attention to amalgamation, which may
suggest that other inventories still contain some bias at small land-
slide sizes. Additionally, we observe thin soils and fractured lime-
stone regolith with relatively limited chemical weathering or soil
formation. Back-analysis of the landslide inventory using pseudo-3D
geometries suggests that the material involved in landsliding has
relatively high friction and very low cohesive properties (Gong et al.
2023), which may also contribute to the less steep decay in landslide
size frequency for this particular inventory compared to others.
Landslide area-volume relationships for landslides mapped
within the areas that have both UAV and SETSM models have sta-
tistical properties that are common for mixed soil-rock and rock
inventories based on limited number of manually measured land-
slide volumes (Larsen et al. 2010) (Fig. 11). Typically, inventory data
report the plan-view area (2D area) for the entire mapped landslide
or less commonly, separately mapped source area (Roback et al.

\ Landslides

2018; Massey et al. 2020a, b). Here we additionally consider the 3D
area (i.e., sloped area) as well as a summation of area of negative
elevation change only within the mapped polygon (“area of nega-
tive volume”).

We determine a linear relationship between log volume and
log area based on different assumptions of area. We exclude
very thin landslides (volume/area ratio < o0.4) as these land-
slides have very high uncertainty and are also likely to have a
different mechanism such as raveling or shallow, discontinuous
reactivation of previously disturbed material. First, we consider
the typical scaling approach of volume versus 2D mapped area
of the full landslide using the entire dataset. Unsurprisingly,
this yields low exponent values of y =1.0 and intercept values
of a=0.8 and 0.9 for the UAV and SETSM models respectively
resembling bulk summary statistics from the 2016 M,,7.8 Kai-
koura earthquake-triggered landslide inventory (Massey et al.
20204, b) (Table 1, Fig. 11). Less scatter and steeper relationships
are observed when using the 3D source area with exponent values
of y=1.1 and intercept values of a =0.7, and even steeper rela-
tionships are observed when using the 3D negative source area (y
=1.2 - 1.6 and a = 0.02 - 0.3) (Table 1; Fig. 11; Fig. 12). Generally
there is good agreement between the UAV and SETSM models
for most geometries.

The range in log volume-area statistical values demonstrates
sensitivity to methodology choices (Table 1). When we consider
only the area of negative volume, we produce a steeper and well-
defined volume-area relationship by reducing the scatter of low-
volume estimates that might be due to debris deposition within
the landslide area or complex patterns of amalgamated landslid-
ing in some areas that are not easily separated into independent
source regions with corresponding debris trails. The area of nega-
tive volume results in smaller areas, because we often observe that
volume loss occurs over just a portion of the mapped landslide
area. The corresponding results for using the negative area show
agreement between the UAV and SETSM models for both sources
and full areas. We note in particular, that using only the 3D area of
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Fig. 10 Landslide frequency-area relationships. Heavy tailed model fits to data from the 2015 landslide inventory (reproduced from Medwed-

eff et al. 2020)

negative volume produces consistent and steeper values (y =1.2;
a =0.3) compared to using the full 3D area (y =1.0-1.1and a =0.7-
0.9) further supporting the observation that areas of patchy, shal-
low landsliding and ravel introduces complexity to estimating
average volume area scaling parameters, even for a single landslide
event. This general relationship holds true for source areas and for
larger landslides as well.

Discussion

The purpose of this study is to evaluate the use of satellite and
optically-derived DSM models for direct measurement of 3D
landslide volumes for regionally significant events, which may be
more rapidly and cheaply acquired compared to LiDAR and air-
borne surveys. Comparison of two datasets gives us an idea of the
repeatability and reliability of each independent dataset: one from
UAV and another from satellites, and each collected on dates a few
months apart. The two datasets presented here compare favorably
in terms of similarity in spatial patters of elevation loss and gain

(Fig. 6) as well as individual landslide volumes (Fig. 7), which sug-
gests that optically derived DSMs are promising for future develop-
ment of 3D inventory mapping. However, both datasets likely suffer
from overestimation of surface change because of vegetation. As
expected, we observe a small positive bias in the difference models
for both datasets for stable areas (Supplementary Information). We
attribute the overall success of the DSM and difference models in
Lefkada to the condition of the slopes studied, which are steep and
have sparse or no vegetation. While vegetation filtering made some
improvement on the UAV models, similar application to SETSM
was not successful by the methods presented here. We determine
uncertainties on our post-event DSM models to have a mean offset
of 0.5 m (0 =2.1m) for the UAV datasets (excluding one region with
systematic registration issues) and a mean offset of 1.7 m (0 =3.5 m)
for the SETSM models. The higher values for SETSM likely reflect in
part, vegetation differences compared to the filtered UAV models.
Application in more densely vegetated terrain would likely have
different results than presented here.
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The volume/area ratio, rather than elevation change or volume
alone, was a more useful discriminate on limits of detection sug-
gesting that thin rather than small landslides present a particular
challenge. When DSM and difference model uncertainties are prop-
agated into landslide volume uncertainty, we observe that land-
slides with volume/area ratios less than 0.4 show systematic and
exponentially increasing error. When considering field and image
interpretation, we suggest that these thin landslides are raveling
or otherwise chaotic(?) surface displacements that are likely not
coherent landslide movements and may also represent ongoing
post-event slope changes. At this scale, we are running up against
not a limit of technology and spatial resolution, but rather a limit
in interpreting the landsliding process itself, which likely no longer
conforms to defining simple, individual landslide geometries at a
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range of “landslide” areas. Further, other factors complicate inter-
pretation of the smallest landslides in regional inventories. Prob-
ably the largest contributing factor is the time delay between before
and after datasets and the likelihood of continued displacement
of materials at the meter scale following the main shock of the
earthquake. The issue of detection limits raises the question that
the real cutoff may likely be a change in mechanism and unrelated
to our technical ability to resolve surface change, and that change
occurs not at a cutoff landslide area but rather depth and is best
interpreted by image and field observation of slope behavior. These
observations should prompt reconsideration of how we select the
smallest landslide size for inclusion in regional landslide inventory
statistics and how limits of detection are incorporated into auto-
mated 3D landslide mapping (Bernard et al. 2021).



Table1 Log-log volume-area scaling parameters. Values are
reported for slope and exponent values (y, a). Bold values are shown
in Figs. 11 and 12 with all plots with fits shown in Supplementary
Fig.4 and 5.

Vol-2D area Vol-3D area Vol-neg 3D
area

Full polygon—fit to entire population
UAV 1.0,0.9 1.0,0.9 12,03
SETSM 1.0,0.8 1.0,0.7 1.2,0.3
Source polygon—fit to entire population
UAV 1.1,0.6 1.1,0.7 12,03
SETSM 1.1,0.9 1.1,0.7 1.2,0.3
Full polygon—fit to > 10> m?
UAV 1.3,0.1 1.2,0.1 1.3,0.1
SETSM 1.1,04 1.2,0.3 1.3,0.1
Source polygon—fit to 10> m?
UAV 1.4,0.1 1.4,0.03 1.6, 0.02
SETSM 1.3,0.1 1.3,0.1 14,0.1

The Lefkada event also provided an opportunity to advance
landslide mapping protocols as well as assess several aspects of
landslide mapping that have been speculated to affect event sta-
tistics, such as source vs. full area mapping, 2D vs. 3D area deter-
mination and amalgamation (Li et al. 2014; Marc and Hovius 2015;
Massey et al. 2020a, b; Bernard et al. 2021). Additionally, we consider
a summation of area only over the area of negative elevation change
within the mapped polygon (“area of negative volume”). Subjec-
tive decisions made in the mapping process to address amalgama-
tion also factors significantly into the determination of landslide
frequency and commonly used statistics to measure and compare
landslide events. Here we use a combination of features to define
individual landslides within landslide complexes that include topo-
graphic features such as drainage divides and upslope contribut-
ing area, as well as visual features in the optical imagery of debris
deposits. Doing so produces a log-normal distribution of landslide
areas, and a censorship of both small and large landslide sizes, as is
predicted by models considering the cohesion and depth dependent
strength of near surface materials (e.g., (Frattini and Crosta 2013))
and the distribution of different hillslope lengths in a natural land-
scape (Medwedeff et al. 2020). We observe that differences in land-
slide event summary statistics in considering 2D versus 3D land-
slide area are negligible and are smaller than the slight differences
between consideration of source versus full areas (Table 1). We note
consideration of 3D area also introduces the complexity of scale, as
the 3D area becomes exponentially larger for increasing DEM reso-
lution. Thus, the measure of the 3D area for high-resolution datasets
reflects in part, the roughness of the topographic surface rather
than simply the difference between a slope-averaged area across a
landslide compared to its 2D planform projection. Some thought as
to the appropriate scale for averaging 3D slope values may improve
results especially for individual landslides, but at present it seems

to present a minor contribution to summary statistics measured
across several orders magnitude scale. We find that consideration
of the “area of negative volume” provided the greatest consistency
in volume-area scaling, which we interpret to reflect a previously
unrecognized aspect of determining landslide characteristics over
a complicated failure surface.

In large landslide events, empirical V-A scaling relationships
are typically coupled with 2D mapped landslide inventory data to
project the total sediment volume mobilized by landslides during
extreme events such as earthquakes and major storms (e.g., Li et al.
2014, 2017). To our knowledge, only two other regional earthquake
landslide inventories exist that are based on direct differencing
methods of before/after DEMs as in this study, both describing all
or part of the 2016 M,, 7.8 Kaikoura earthquake event in New Zea-
land (Massey et al. 20204, b; Bernard et al. 2021). This event trig-
gered nearly 30,000 landslides and both used substantially more
expensive deployment methods using either airborne orthophoto
imagery or LIDAR. Compared to these studies, we derive similar
volume-area scaling parameters when considering 2D area and
the entire population of source polygons. However, when con-
sidering landslides >10° m3, we derive substantially higher slope
exponents to the volume-area scaling relationship that reflect on
average deeper landslides than observed in the Kaikoura exam-
ple. We caution the determination of a single set of parameters to
describe earthquake-triggered events, as the geologic condition and
strength profile of the near surface environment likely significantly
factors into this scaling. The methodology and completeness of
landslide volume inventory presented here promises to improve
these predictions by investigating controlling factors and selec-
tively applying log area-volume parameters only to appropriately
select the total landslide area. For example, the inclusion of shal-
low landslides (< 0.4 m average depth) and ravel that are not well
captured by statistics reported from manual volume estimates from
field methods, will likely overestimate total landslide volume. We
note also that while commonly not emphasized in scaling studies,
the alpha (log-intercept) can also have a large effect on estimating
total event landslide volume. All of this is to emphasize the com-
plexity of volume-area scaling parameters, and the sensitivity of
these parameters to methodology, data quality, and representation
across regional scales.

As more pre-event DEMs are becoming available, one significant
challenge in using surface change detection for landslide events is
the mixture of datasets (hybrid datasets) that may exist before and
after the event, and the temporal proximity of those datasets to the
event itself. DEM differencing from rapid deployment of UAV or
satellite imagery coverage will also provide essential situational
awareness during landslide disasters. Validation of satellite derived
topography as presented here supports the use of such products as
a cheaper and more readily available source of post-event topog-
raphy for rapid response work to natural disasters, as well as the
potential for research-grade datasets that may be more geographi-
cally distributed.

Conclusions

Optical data are constantly improving with advancements that allow
for higher image resolution, ease of deployment or acquisition, and
increases in the frequency of repeat measurement for which specific
forcing of geomorphic change can be more confidently assigned.
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Using two post-event datasets that were differenced from the same
pre-event DEM allowed us to compare the resulting difference mod-
els as well as statistics of each independent difference model to assess
the resulting 3D landslide inventory in terms of fidelity of measure-
ment, minimum mapping resolution, and volume uncertainty. We
find good agreement between DSM data types, which provides vali-
dation for the proposed methods for creating 3D landslide invento-
ries. The UAV models performed with less variability (lower uncer-
tainties) than the SETSM models likely due to better registration,
higher resolution, and success of vegetation filtering programs.

The completeness and high resolution of the volume inven-
tory allowed us to evaluate commonly cited statistics for landslide
event inventories in new ways, such as exploring aspects of previ-
ous workflows that have been speculated to influence inventory
scale statistics but not previously analyzed. These include analy-
sis of source areas compared to full landslide areas, use of 2D
(planview) landslide area versus 3D slope area, and amalgamation
of adjacent landslides that coalesce into complicated landslide
complexes. We demonstrate the sensitivity of statistical relation-
ships to topographic resolution, accurate registration of before/
after images, and estimation of 2D (plane) area versus 3D surface
area. Across many portions of the inventory, our findings reveal
complex patters of surface change that often are not well approxi-
mated by a simple landslide slip surface geometry and question
the utility of landslide frequency as a statistical measure. These
areas of shallow change account for a large percentage of the total
landsliding area but have proportionally small contribution to the
total landslide mass. When considering discrete landslide masses,
if the highly uncertain shallow change is removed from the vol-
ume area relationship, we predict equal to larger total volumes
than previous relationships based on field data alone. We also find
that defining landslide areas as the areas where only volume loss
was calculated, as opposed to the entire “source” area, significantly
reduces scatter of the volume-area relationship. When restrict-
ing analysis to only the most frequent landslides and larger (A=
>10° m?), produces a value ('y =1.3-1.4) equal to the global value
of rock rather than soil. This result challenges a commonly held
notion that earthquake-triggered landslides are only shallow, and
therefore do not contribute to landscape denudation by detach-
ment of intact bedrock.

As we eliminate the selection bias of ground-based field studies
that focus only on few, well-defined landslides and by enhancing
2D image-based landslide inventories to account for the magni-
tude of elevation change, new patterns of ground failure become
evident and will require adaptation in mapping and statistical data
interpretation.
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